

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

 SYSTEMS EXECUTION MODELING TECHNOLOGIES FOR
LARGE-SCALE NET-CENTRIC DEPARTMENT OF DEFENSE
SYSTEMS

Vanderbilt University

December 2011

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2011-282

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public
Affairs Office and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2011-282 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

WILLIAM MCKEEVER PAUL ANTONIK, Technical Advisor
Work Unit Manager Advanced Computing Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
 December 2011

2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

December 2007 – May 2011
4. TITLE AND SUBTITLE

SYSTEMS EXECUTION MODELING TECHNOLOGIES FOR LARGE-
SCALE NET-CENTRIC DEPARTMENT OF DEFENSE SYSTEMS

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
FA8750-08-1-0025

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Aniruddha Gokhale
Douglas Schmidt
Brian Dougherty
Jules White

5d. PROJECT NUMBER
459T

5e. TASK NUMBER
VS

5f. WORK UNIT NUMBER
EM

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Vanderbilt University
110 21ST Avenue South
Nashville TN 37203-2416

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI/RRS

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2011-282

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2011-6342
Date Cleared: 7 December 2011

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The “System Execution Modeling Technologies for Large-scale Net-centric DoD Systems (GUTS)” project developed and validated
system execution modeling technologies that support design space exploration and evaluation of US Department of Defense (DoD)
software-intensive net-centric systems before final implementation/testing and throughout subsequent system evolution. In
particular, there were two primary objectives of the proposed project. First, the development of system execution modeling tools that
enable system and software engineers to automatically and accurately detect, diagnose, and resolve system performance and stability
problems stemming from design decisions made in early lifecycle phases. Second, apply these tools to systematically and empirically
measure and evaluate the impact of multi-core and distributed processing, on software predictability and optimization in the context
of representative DoD net-centric systems.

15. SUBJECT TERMS
Heuristic optimization; System Execution Modeling, Model based Software development

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

112

19a. NAME OF RESPONSIBLE PERSON

WILLIAM MCKEEVER
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Table of Contents

LIST OF FIGURES .. IV

LIST OF TABLES ... V

1. SUMMARY .. 1

2. SYSTEM EXECUTION MODELING: MOTIVATION AND OVERVIEW .. 3

3. ARCHITECTURE OF GUTS ... 8

3.1 GUTS WORKFLOW .. 8
3.2 GUTS ARCHITECTURE ... 10
3.3 GUTS IN THE CONTEXT OF THE AFRL SPRUCE PROGRAM .. 14

4. AUTOMATING CONFIGURATIONS USING MODEL‐DRIVEN ENGINEERING .. 16

4.1 INTRODUCTION .. 16
4.2 LARGE‐SCALE DRE SYSTEM CONFIGURATION CHALLENGES. .. 17
4.3 REVIEWING LITERATURE ON SYSTEM CONFIGURATION OPTIMIZATION. ... 19
4.4 MDE‐BASED CONFIGURATION MODELING METHODS AND TOOLS. .. 22
4.5 CASE STUDY .. 25
4.6 CONCLUDING REMARKS ... 27

5. EXTENDING MODEL‐DRIVEN CONFIGURATION AUTOMATION TO PRODUCT LINE ARCHITECTURES 29

5.1 INTRODUCTION .. 29
5.2 PLA MODELING, DOMAIN ANALYSIS, AND TESTING CHALLENGES .. 29
5.3 MODEL‐DRIVEN TESTING AND DOMAIN ANALYSIS TECHNIQUES FOR PRODUCT‐LINE ARCHITECTURES 30

5.3.1 FireAnt Feature Modeling .. 31
5.3.2 Dependency and Deployment Views .. 31

5.4 RESULTS SUMMARY .. 32
5.5 CONCLUDING REMARKS ... 32

6. MINIMIZING NUMBER OF PROCESSORS USING BLITZ .. 34

6.1 INTRODUCTION .. 34
6.2 CHALLENGES OF COMPONENT DEPLOYMENT MINIMIZATION .. 35
6.3 DEPLOYMENT OPTIMIZATION WITH BLITZ .. 35

6.3.1 BLITZ Binpacking .. 35
6.3.2 Utilization Bounds .. 36

6.4 EMPIRICAL RESULTS .. 37
6.4.1 Experimental Platform ... 37
6.4.2 Processor Minimization with Various Scheduling Bounds ... 37

6.5 CONCLUDING REMARKS ... 38

7. MINIMIZING NETWORK BANDWIDTH USAGE WITH NOMAD... 40

7.1 INTRODUCTION .. 40
7.2 CHALLENGES IN DEPLOYMENT NETWORK BANDWIDTH MINIMIZATION ... 42

7.2.1 Challenge 1: Tolerating Processor Failure .. 42
7.2.2 Challenge 2: Collocating Software Tasks ... 43
7.2.3 Challenge 3: Minimizing Resource Requirements .. 43
7.2.4 Challenge 4: Meeting Budgetary Constraints .. 43
7.2.5 Challenge 5: Ensuring Schedulability of Software Tasks .. 44
7.2.6 Challenge 6: Reconciling Multiple Constraint Models .. 44

Approved for Public Release; Distribution Unlimited
i

7.3 NETWORK BANDWIDTH MINIMIZATION WITH NOMAD .. 44
7.4 CONCLUDING REMARKS ... 46

8. SCATTERD: MULTI‐OBJECTIVE DEPLOYMENT OPTIMIZATION .. 47

8.1 INTRODUCTION .. 47
8.2 MODERN FLIGHT EMBEDDED AVIONICS SYSTEMS: A CASE STUDY .. 48
8.3 DEPLOYMENT OPTIMIZATION CHALLENGES .. 49
8.4 SCATTERD: A DEPLOYMENT OPTIMIZATION TOOL TO MINIMIZE BANDWIDTH AND PROCESSOR RESOURCES 49

8.4.1 Satisfying real‐time scheduling constraints with ScatterD .. 49
8.4.2 Satisfying Resource Constraints with ScatterD .. 50
8.4.3 Minimizing Network Bandwidth and Processor Utilization with ScatterD ... 50

8.5 RESULTS SUMMARY .. 51
8.6 CONCLUDING REMARKS ... 51

9. SCORCH: MODEL‐DRIVEN AUTO‐SCALING IN CLOUD PLATFORMS .. 52

9.1 INTRODUCTION .. 52
9.2 CHALLENGES OF CONFIGURING VIRTUAL MACHINES IN CLOUD ENVIRONMENTS ... 54

9.2.1 Challenge 1: Capturing Virtual Machine Configuration Options and Constraints 54
9.2.2 Challenge 2: Selecting Virtual Machine Configurations to Guarantee Auto‐scaling Speed
Requirements ... 54
9.2.3 Challenge 3: Optimizing Queue Size and Configurations to Minimize Energy Consumption and
Operating Cost ... 55

9.3 SCORCH: AN MDE BASED OPTIMIZATION TECHNIQUE FOR GENERATING CLOUD AUTO‐SCALING QUEUES 55
9.4 RESULTS APPLYING SCORCH ... 56

9.4.1 Experiment: Virtual Machine Provisioning Techniques .. 57
9.4.2 Power Consumption & Cost Comparison of Techniques .. 57

9.5 CONCLUDING REMARKS ... 58

10. DEPLOYMENT OPTIMIZATIONS FOR MOBILE DOD SYSTEMS .. 60

10.1 MOBILE DEVICES IN DOD SYSTEMS .. 60
10.2 CHALLENGES IN MAXIMIZING SMART PHONE CLOUD LIFETIME .. 62
10.3 THE SMARTDEPLOY ARCHITECTURE ... 64
10.4 EMPIRICAL RESULTS USING SMARTDEPLOY .. 65

10.4.1 Experiment 1: Homogeneous nodes, heterogeneous software components 66
10.4.2 Experiment 2: Heterogeneous nodes (but same OS), heterogeneous software components 66
10.4.3 Experiment 3: Varying the number of software components (heterogeneous) deployed on fixed
number of heterogeneous nodes ... 67
10.4.4 Experiment 4: Heterogeneous nodes (including different OS) and heterogeneous software
components .. 68
10.4.5 Experiment 5: Comparison of service uptime by all the algorithms with that of brute‐force
algorithm 69
10.4.6 Experiment 6: Comparison of computation time taken by each of five algorithms to execute 69

10.5 CONCLUDING REMARKS ... 70

11. DYNAMIC RESOURCE MANAGEMENT FOR CLOUD COMPUTING‐BASED DOD SYSTEMS 72

11.1 INTRODUCTION .. 72
11.2 CHALLENGES TO ELASTIC RESOURCE PROVISIONING IN CLOUD ENVIRONMENTS 73

11.2.1 Challenge 1: Workload Forecasting .. 73
11.2.2 Challenge 2: Identify Resource Requirement for Incoming Load .. 74
11.2.3 Challenge 3: Resource Allocation while Optimizing Multiple Cost Factors 74

11.3 AUTO‐SCALING RESOURCES USING LOOK‐AHEAD OPTIMIZATIONS ... 74
11.3.1 Workload Prediction ... 75
11.3.2 Performance Model... 76

Approved for Public Release; Distribution Unlimited
ii

11.3.3 Optimizing Resource Provisioning ... 77
11.4 EXPERIMENTAL EVALUATION .. 78

11.4.1 Just‐in‐time Resource Allocation ... 78
11.4.2 Resource Usage under Different Cost Priorities .. 79

11.5 CONCLUDING REMARKS ... 83

12. RUNTIME INFRASTRUCTURE FOR DEPLOYMENT AND CONFIGURATION .. 85

12.1 INTRODUCTION .. 85
12.2 IMPEDIMENTS TO PREDICTABLE DEPLOYMENT LATENCY ... 86
12.3 OVERCOMING DEPLOYMENT LATENCY BOTTLENECKS IN LE‐DANCE .. 89

12.3.1 Improving Runtime Plan Processing .. 89
12.3.2 Parallelizing Deployment Activity.. 90

12.4 CONCLUDING REMARKS ... 92

13. CONCLUSIONS .. 94

13.1 SUMMARY .. 94
13.2 FUTURE WORK .. 95
13.3 REPRESENTATIVE PUBLICATIONS .. 95

14. REFERENCES ... 97

APPENDIX A. LIST OF ACRONYMS .. 103

Approved for Public Release; Distribution Unlimited
iii

List of Figures

Figure 1: Complexities of Serialized Phasing in Net-centric DoD Systems 4
Figure 2: Evaluating the QoS of DoD Systems via System Execution Modeling Tools 6
Figure 3: Workflow of Applying GUTS to Evaluate Net-centric DoD System Performance 9
Figure 4: The GUTS Model Event Bus .. 11
Figure 5: The CUTS DSML and Related Tools and DSMLs ... 12
Figure 6: Scatter and Related Tools .. 13
Figure 7: GUTS in the Context of AFRL SPRUCE ... 15
Figure 8: Testbed Environment for GUTS ... 15
Figure 9: FCF Optimality with 10,000 Features ... 21
Figure 10: Meta-modeling Defined using GEMS ... 23
Figure 11: GEMS Deployment Plan Model .. 24
Figure 12: GME Class View Meta-modeling of ASCENT .. 26
Figure 13: GME Model of Configuration Solution with AMP ... 27
Figure 14: Deployment Plan Comparison ... 38
Figure 15: Scheduling Bound versus Number of Processors Reduced ... 38
Figure 16: auto-scaling in a Cloud Infrastructure ... 53
Figure 17: SCORCH Process .. 55
Figure 18: Monthly Power Consumption and Cost .. 57
Figure 19: Savings in Power Consumption and Cost ... 58
Figure 20: Environmental Impact of SCORCH-based Deployment ... 58
Figure 21: Smart phone Cloud Motivating Scenario .. 62
Figure 22: SmartDeploy Architecture ... 65
Figure 23: Homogeneous Nodes, Heterogeneous Components ... 66
Figure 24: Heterogeneous Nodes, Heterogeneous Components ... 67
Figure 25: Varying the Number of Heterogeneous Software Components 68
Figure 26: Heterogeneous Nodes (Different OS), Heterogeneous Components 69
Figure 27: Time Taken by Each Algorithm to Execute .. 70
Figure 28: Workload for the 1998 FIFA Soccer World Cup .. 72
Figure 29: Predicted versus Actual Workload .. 75
Figure 30: Just-in-time Resource Allocation with Changing Load .. 79
Figure 31: Resource Allocation for Low SLA Violation Cost and High Machine Cost (1:13:0) 80
Figure 32: Resource Allocation for High SLA Violation Cost (1:4:0) ... 81
Figure 33: Resource Allocation for Variety of Systems ... 81
Figure 34: High SLA Violation with Low Reconfiguration Cost ... 82
Figure 35: High SLA Violation with Medium Reconfiguration Cost .. 83
Figure 36: High SLA Violation with High Reconfiguration Cost .. 83
Figure 37: OMG D&C Architectural Overview ... 87
Figure 38: Simplified DAnCE Architecture ... 88
Figure 39: DAnCE Node Application Implementation .. 89
Figure 40: Locality Manager Startup Sequence .. 91
Figure 41: DAnCE Deployment Scheduler .. 92

Approved for Public Release; Distribution Unlimited
iv

List of Tables
Table 1: Time taken to run Brute-force algorithm for service uptime .. 69
Table 2: Components of the Cost Equation .. 78

Approved for Public Release; Distribution Unlimited
v

1. Summary

The “System Execution Modeling Technologies for Large-scale Net-centric DoD Systems”
project developed and validated system execution modeling technologies that support design
space exploration and evaluation of US Department of Defense (DoD) software-intensive net-
centric systems before final implementation/testing and throughout subsequent system evolution.
In particular, there were two primary objectives of this project. First, the development of system
execution modeling tools that enable system and software engineers to automatically and
accurately detect, diagnose, and resolve system performance and stability problems stemming
from design decisions made in early lifecycle phases. Second, apply these tools to systematically
and empirically measure and evaluate the impact of multi-core and distributed processing, as
well as commercial off the shelf (COTS) componentization and Service-Oriented Architectures
(SOAs), on software predictability and optimization in the context of representative DoD net-
centric systems

The three year project, “System Execution Modeling Technologies for Large-scale Net-centric
DoD Systems”, conducted research to address these challenges, and resulted in practical artifacts
as part of a tool suite called “GUTS: GEMS (Generic Eclipse Modeling System) Utilization Test
Suite.” The research conducted sought solutions along three dimensions:

 Design-time solutions – where research was conducted in model-based algorithms and
technologies;

 Deployment-time solutions – where research was conducted on a variety of deployment-
related optimization solutions, often based on heuristics;

 Run-time solutions – where research was conducted on runtime architectures to support
the design-time and deployment-time decisions.

Over the course of the project, a significant effort was focused on deployment and configuration
(D&C) challenges for next-generation of DoD-centric systems that leverage advances in
computing, hardware and networking technologies. The project also applied the solutions to
D&C challenges in cloud computing, including the use of multi-core technologies and mobile
platforms.

This report describes the contributions accomplished during the three year project and is
organized as follows: Section 2 provides an overview of system execution modeling; Section 3
describes the overall architecture of GUTS; Section 4 describes how model-driven engineering
can help automate configurations of DoD-centric systems; Section 5 extends the work to
demonstrate the idea for product line architectures; Section 6 focuses on an important topic for
resource-constrained DoD-centric systems for which it is important to minimize the number of
resources used to deploy DoD systems; Section 8 describes our effort on the deployment and
configuration of distributed real-time and embedded (DRE) systems focusing on multi-objective
deployment optimizations, i.e., when considering more than one parameter as a constraint in
contrast to only one as described in Sections 6 and 7. Section 9 describes how model-driven
technologies can be used to enable auto-scaling in cloud platforms and demonstrates how the
model-driven technology developed under this effort, SCORCH, is used in power management

Approved for Public Release; Distribution Unlimited
1

for cloud environments; Section 10 describes our effort which continues the theme of auto-
scaling issues in cloud computing, however, with a focus on investigations on battery power
concerns for smart phone-based cloud computing environments; Section 11 furthers the theme on
the auto-scaling issues in cloud computing with a focus on investigations into balancing the costs
of acquiring and releasing a machine, and their reconfigurations. An additional dimension of this
section is on the deployment and configuration of distributed systems, which can also handle
deployment in the Cloud; Section12 focuses on the runtime infrastructure that enables the
deployment and validation of DoD system artifacts in the runtime execution environment.
Predictable performance of these capabilities is important for assuring QoS properties of DoD
systems; lastly, Section 13 gives a short summary and discusses future work.

Approved for Public Release; Distribution Unlimited
2

2. System Execution Modeling: Motivation and Overview

Our work in the Air Force’s Global Information Grid (GIG), Army’s Future Combat Systems
(FCS) program, and the Navy’s DDG 1000 program activities motivate a challenging problem
facing developers of large-scale and layered DoD software-intensive net-centric systems: how to
discover, measure, and rectify structural, integration, and/or performance problems early in the
system's lifecycle (e.g., in the architecture and design phases), as opposed to the final system
integration phase, when mistakes are much harder and more costly to fix. The bulk of today’s
software technologies and validation/verification techniques are designed to develop and analyze
relatively small-scale systems, where the set of tasks that will run in the system and their re-
quirements for system resources are known in advance. Unfortunately, these technologies are
poorly suited for large-scale DoD systems, where it is not possible to know the entire set of
application tasks that will run on the system, the loads they will impose on system resources in
response to a dynamically changing environment, or the order in which the tasks will execute.
Moreover, even in today’s smaller-scale DoD systems where load is known in advance, there is
often little confidence that system quality of service (QoS) requirements will be met in the de-
ployment phase due to the complexities of analyzing complex systems built atop commercial-
off-the-shelf (COTS) hardware and software components.

Net-centric DoD systems must provide QoS support to process the right data, in the right place,
at the right time, over a networked grid of computers. Some QoS properties required by these
DoD systems include the low latency and jitter as expected in conventional real-time and
embedded systems, and high throughput, scalability, and reliability as expected in conventional
enterprise distributed systems. Achieving this combination of QoS capabilities in DoD systems is
hard, particularly when the systems are developed using COTS hardware/software components.

Net-centric DoD systems are developed using applications composed of hardware/software com-
ponents running on a wide range of platforms, some of which are COTS and some of which are
proprietary legacy systems. These components are designed to provide reusable services to a
range of application domains that are composed into domain-specific assemblies for application
(re)use. The transition to modern methodologies, languages, and runtime platforms is intended to
address problems of inflexibility and reinvention of core capabilities associated with prior mono-
lithic, functionally-designed, and “stove-piped” legacy applications developed with the precise
capabilities required for a specific set of requirements and operating conditions. Modern runtime
platforms, such as component-based and Service-Oriented Architecture (SOA)-based systems,
for example, are designed to have a range of capabilities that enable their reuse in other contexts.
Moreover, these systems are developed in layers, e.g., layer(s) of infrastructure middleware ser-
vices (such as naming and discovery, event and notification, security and fault tolerance) and
layer(s) of application components that use these services in different compositions.

Approved for Public Release; Distribution Unlimited
3

Figure 1: Complexities of Serialized Phasing in Net-centric DoD Systems

Figure 1 shows a particularly vexing problem facing researchers and developers of large and lay-
ered net-centric DoD systems, where the inadequacies of system architectures may not be ascer-
tained until years into development. At the heart of this problem is the serialized phasing of
layered system development, which postpones the discovery of design flaws that affect system
QoS until late in the lifecycle, i.e., at final system integration time. A hallmark of serialized
phasing is that application components are not created until after the completion of their un-
derlying system infrastructure components, such as naming and discovery, event and notifica-
tion, security and fault tolerance, and resource management.

As shown in Figure 1, in net-centric DoD systems built using serialized phasing, the implementa-
tions, configurations, and deployments of infrastructure components are often not tested ade-
quately under realistic workloads until the applications are done. Moreover, both application and
infrastructure components are hosted on the same target architecture, and therefore must be
properly deployed and configured to achieve the desire QoS. As a result, it hard to know how
well the system will satisfy key QoS properties due disconnects in the development of
infrastructure and application components. Moreover, handcrafted software designs used in
many DoD systems to address these concerns make it hard to conduct “what if” experiments on
alternative system architectures and implementations to determine valid configurations to obtain
performance goals for a particular workload. Making any significant changes to these types of
handcrafted systems late in their lifecycle can be costly due to the impact on the design, im-
plementation, deployment, and (re)validation of many application and infrastructure
software/hardware components.

As a result of the serialized phasing problems described above, many performance characteristics
of net-centric DoD system's components, such as invocation rates, time per invocation, and
failover delay, are not known precisely in early phases of the lifecycle. The understanding of the
component's timing and other properties is derived from the use of reusable software, such as
COTS components and web services, as well as the influence of hardware based constraints (e.g.
periodic sensor data, etc.). Although the individual component performance properties are often

Approved for Public Release; Distribution Unlimited
4

well understood, system architectures and designs routinely fail to meet their end-to-end QoS
goals due to unforeseen complexities of system integration. The major forces that make
predicting end-to-end QoS hard in net-centric DoD systems include the following:

 Emergent complexity. Although the individual QoS properties of components may be docu-
mented, unforeseen side effects of their interaction, such as prolonged execution time
because of competition for CPU usage with other collocated components or event queuing in
lower priority components due to high event rates in higher priority components, are not
realized until integration time. It is therefore hard to accurately predict end-to-end QoS until
the system is integrated and tested in its target environment.

 Ripple effects. Individual components yield different QoS metrics for different
hardware/software configurations. For example, a CPU bound component will perform better
(e.g., produce a lower service time) on a faster CPU, whereas a network bound component
will perform better with a larger bandwidth. Moreover, different versions of software may
introduce new optimizations (e.g., improved caching or remote invocations) that can alter
existing QoS metrics and affect end-to-end QoS. It is hard to predict precisely how end-to-
end QoS will be affected by such changes until the system is integrated and tested in its
target environment.

 Vast configuration spaces. System components can have multiple configurations (e.g.,
setting of attributes) that can affect its end-to-end QoS. For example, a component that
permits configuring the number to threads handling input event will produce different
performance metrics based on the number of threads configured. Manually trying to
understand how different configurations of system components affect end-to-end QoS is time
consuming, tedious, and error-prone.

 Hardware interaction. End-to-end system performance is highly dependent on the
deployment topology of the application. Different deployment topologies can have widely
varying end-to-end execution times. Understanding how colocation/distribution decisions,
the interaction of different COTS/proprietary hardware and software components, and
network topologies will affect timing properties is infeasible for systems of realistic sizes
containing hundreds or more components.

As a result of the forces described above, manually deriving the most promising deployment
configurations for net-centric DoD systems is infeasible [1]. These types of systems often have
numerous types of constraints and huge solution spaces that make it hard to manually derive
valid deployments. Moreover, net-centric DoD system constraints, such as network bandwidth
and memory footprint limitations, are exponential in complexity and require constraint solvers
(e.g., finite domain solvers) [2], [3] and numerical methods (e.g., the simplex method) [4] to find
valid deployments.

To address the challenges of serialized phasing in DoD systems described above, DoD re-
searchers and practitioners need a methodology and an associated suite of system execution
modeling (SEM) tools [5] that use model-driven engineering (MDE) technologies [6], [7] to sim-
plify the following:

Approved for Public Release; Distribution Unlimited
5

 Emulation of application component behavior in terms of computational workloads,
resource utilizations and requirements, and network communication. This step should be
done quickly and precisely, e.g., by using domain-specific modeling languages (DSMLs) [8–
10] that capture the behavior and workload of system components at a high-level of
abstraction and then generate code that executes emulated components in a representative
execution environment (ideally the actual runtime deployment platform).

 Configuration, deployment, and execution of the emulated application components atop
actual infrastructure components to determine their impact on QoS empirically in actual run-
time environments. These steps should also be accomplished quickly and precisely, e.g., by
using DSMLs to specify realistic deployment configurations and synthesize metadata
describing them. This metadata can then be processed by the same deployment and
configuration tools as the actual system, with SEM tools providing mechanisms to record,
consolidate, and collect QoS metrics (such as execution times and resource usage) from the
runtime environment.

 Process of feeding back the results to enhance system architectures and components to
improve end-to-end QoS. This step should be accomplished by archiving the collected QoS
metrics and providing tools that view and analyze the overall results of a deployment. SEM
tools should also provide histories of the collected metrics to enable engineers and architects
to understand performance and make well-informed decisions to improve QoS.

Figure 2 shows the relationships between the steps described above. Over time as the actual
application components mature, they can replace the emulated components providing a more
realistic evaluation environment for DoD systems, thereby alleviating many of the current
problems with serialized phasing in large-scale software-intensive systems.

Figure 2: Evaluating the QoS of DoD Systems via System Execution Modeling Tools

In general, SEM tools enable system engineers, software architects/developers, and quality
assurance (QA) engineers to address the inherent complexities that arise from properties of
production systems, including communication delay, temporal phasing, parallel execution, and
synchronization. There are typically only a few deployment configurations that actually can
satisfy the functional and performance requirements established in software and system
architecture. SEM tools enable architects and engineers to discover, measure, and rectify

Approved for Public Release; Distribution Unlimited
6

incipient integration and performance problems early in a system's lifecycle (e.g., in the analysis
and/or design phases). These tools help shift the focus of the software integration resources to
productive activities that evaluate and validate system performance and end-user value, rather
than serving as the de facto system design debugging activity, as is often the case today.

Approved for Public Release; Distribution Unlimited
7

3. Architecture of GUTS

To achieve these objectives of SEM and to address the challenges described in Section 2, we
have prototyped and empirically validated the GEMS (Generic Eclipse Modeling System)
Utilization Test Suite (GUTS), which is a SEM tool suite consisting of performance modeling
languages [11], workload emulators [12], and constraint solvers [13] that can automatically
derive valid deployment configurations (such as mappings to various multi-core, multi-
processor, and multi-node configurations), generate end-to-end system performance tests, and
autonomously/intelligently explore the deployment solution space of net-centric DoD system de-
signs.

3.1 GUTS Workflow

GUTS enables developers and testers to annotate system architectures with the expected
workload of components and then to empirically test the end-to-end performance of the design in
multiple deployment configurations. The key capabilities of GUTS that allow system engineers,
software architectures, and software developers to design and test net-centric DoD systems
include:

 Capability 1: Synthesis of faux components that have the same interfaces and attributes as
the real components, but there is implementation derived from the constructed performance
models. The faux components are then instrumented in the target environment to observe and
collect QoS metrics, such as throughput, service time, or end-to-end deadline. This capability
will allow developers and testers to conduct integration tests during early stages of
development using emulated components to locate and rectify design flaws that may be too
costly to fix later in the development lifecycle.

 Capability 2. Continuous system integration is achieved by allowing real components to
replace the faux components as they are completed. This capability will allow developers to
continuously test their system in the target environment and produce more realistic QoS
metrics. Moreover, it will allow developers to test their components under realistic and
hypothetical workloads to better understand how the system’s QoS is affected.

 Capability 3. Visual analysis of QoS metrics collected while the system is executed in its
target environment. This capability will help to alleviate the time and effort of presenting the
collected metrics in a clear and easy to understand format.

 Capability 4. Constraint solvers that can automatically satisfy the complex deployment
constraints, such as resource constraints, and generate valid configurations. Moreover, the
deployment solution space can be searched using heuristics allowing the tool to look for
deployments considering high in quality. This capability allows the tool to systematically
iterate through deployments and test a system design in the most promising deployment
configurations.

 Capability 5. An autonomous testing mode in which the tool repeatedly solves for valid
deployment plans, executes end-to-end performance tests on it, and then uses the
performance results to refine the deployment topology. If a deployment topology is found to
satisfy the end-to-end goals, the iterative performance testing stops. If not, the system

Approved for Public Release; Distribution Unlimited
8

continues refining the deployment plan and running tests until it finds that it cannot improve
upon its current solution.

By allowing developers to evaluate a system design empirically in multiple deployment
configurations using both faux and real components, GUTS allows developers and testers to
begin conducting integration tests during the early stages of development. Applying GUTS
throughout the system lifecycle will help pinpoint and resolve design flaws earlier in the
development lifecycle before they become too hard and costly to locate and rectify. More
importantly, GUTS will assist system developers and testers in searching the deployment and
configuration space for net-centric systems to locate valid developments and configurations that
meet their desired QoS requirements.

Figure 3: Workflow of Applying GUTS to Evaluate Net-centric DoD System Performance

Figure 3 shows an example workflow of applying GUTS to evaluate the performance of a repre-
sentative DoD system, such as an information dissemination application running in the tactical
GIG. The workflow in Figure 3 consists of the following steps:

1. Quality assurance (QA) engineers use the GUTS SEM tool to work with system engineers
and software architects early in the system lifecycle to compose scenarios that specify the
structure of the system (e.g., the component and their interconnections) and exercise critical
system paths.

2. QoS engineers use GUTS to work with QA engineers to create representative scenarios that
associate performance properties with (a) individual components, such as a component’s
CPU utilization or (b) the system as a whole, such as the deadline of a critical path through
the system.

3. The information captured in the first two steps is then synthesized into executable code and
configuration metadata, then QA engineers use GUTS to configure the workload emulators
to run experiments, generate deployment plans, and measure performance along critical paths
on the target architecture.

Approved for Public Release; Distribution Unlimited
9

4. QA engineers work together with system engineers and software architects to explore design
alternatives from multiple computational and valuation perspectives to (1) analyze results to
verify if deployment plan and configurations meet performance requirements and (2)
quantify the costs of certain design choices on end-to-end system performance. The results
can be fed back to the software architects and developers to address any problems that were
identified using GUTS.

In the context of net-centric DoD systems, our proposed GUTS SEM tool will help systems engi-
neers and software architects conduct “what if” experiments to discover, measure, and rectify
performance problems early in the lifecycle (e.g., in the architecture and design phases), as
opposed to waiting until the integration phase, when mistakes are much harder and more costly
to fix.

3.2 GUTS Architecture

As shown in Steps 1-4 in the workflow in Figure 3, various roles coordinate on the design and
evaluation of a net-centric system and produce multiple domain-specific models. For example, in
Step 1, developers produce architectural models of the system and in Step 4 developers leverage
another model to explore the solution space of the design. A key capability for coordinating the
development of the set of models from the workflow in Figure 3 and achieving the autonomous
testing capability described in Section 3.1 is a method for maintaining the consistency of
multiple independent models.

For example, when new simulation results are produced from experiments, the results may
invalidate the currently modeled assumptions about the system’s resource consumption behavior.
In this case, the autonomous testing facility must update both the behavioral specification of the
system and the deployment models. Updating the deployment model will result in the constraint
solver producing a modified deployment that must then be fed into the architectural model of the
system to produce new deployment descriptors. As each model changes, multiple other models
must be kept in sync.

To manage the complexity of leveraging multiple models of a system, we have developed a
prototype of GUTS that uses the model event bus shown in Figure 4 to integrate multiple
domain-specific modeling languages (DSMLs) that capture different concerns, such as system
behavior, workload, and deployment and configuration.

Approved for Public Release; Distribution Unlimited
10

Figure 4: The GUTS Model Event Bus

In Step 1 of Figure 4, developers specify the architecture of the system through structural
models. Developers also produce a model of the expected behavior of the individual components
in the system in Step 1. The behavioral specification is used to help synthesize faux components
for experiments as outlined in Capability 1 of Section 3.1. The updates to the system behavior
cause an event to be broadcast to the model event bus in Step 2. The model event bus uses an
autonomous service to determine which models are potentially affected by the event and to
notify the relevant models of the change.

The new behavioral data has two ramifications on the Scatter component. First, a new
deployment plan must be deduced (Capability 4 in Section 3.1) that properly accounts for the
updated information on each component’s resource consumption. Second, new faux components
must be synthesized to model the modified behavior (Capability 2 in Section 3.1). Once these
updates to the deployment model and faux components are complete, new experiments must be
run to understand the implications of the changes on the system as a whole. The output of these
experiments is returned to the data (Capability 3 in Section 3.1). After every iteration developers
may replace one or more faux components with actual implementations allowing the continuous
integrating and testing of the system as a whole (Capability 2 in Section 3.1).

The output of the experiments may in turn show that certain key end-to-end deadlines are not be-
ing met and that the system’s architecture must be modified. The modification of the system’s
architecture will in turn create another ripple of changes throughout the system that must be
integrated into the models, emulated, and evaluated. The model event bus is a key enabler of the
continuous autonomous integration and testing in GUTS (Capability 5 of Section 3.1).

As shown in Figure 4, each DSML can be viewed as a component in GUTS. DSMLs we used for
the GUTS prototype include the following:

Approved for Public Release; Distribution Unlimited
11

The Component Workload Emulator (CoWorkEr) Utilization Test Suite (CUTS) [12], which is a
MDE tool that allows developers to rapidly create emulations of component-based applications
and understand is performance in the target domain well before system integration The CUTS
component encompasses three different DSMLs, including the Platform Independent Component
Modeling Language (PICML) [14], [15], Component Behavior Modeling Language (CBML)
[16], Workload Modeling Language (WML) [16]. PICML is used to capture the structural aspect
of component-based applications, such as provided and required interfaces, event sources and
sinks, and attributes. CBML is designed to capture the behavior of reactive systems, such as
component-based systems. WML is used to associate workload parameters with the actions in
CBML to create operations that can be emulated on the target architecture (e.g., a representative
testbed used for system integration testing).

Figure 5: The CUTS DSML and Related Tools and DSMLs

Figure 5 shows how CUTS models can be used to specify the behavior and workload of
individual components so that the system can be emulated on the target architecture (i.e., a
representative testbed used for system integration) during the early stages of development (i.e.,
before system integration). As illustrated in Figure 5, CUTS models is composed of component
software architecture models captured using PICML and behavior models for each component
captured using CBML and WML. Initially, a developer bootstraps the CUTS models by defining
the behavior and workload parameters (e.g., how much memory to consume) and estimating
resource usage of each component in the system. These initial estimates are then replaced after
the first emulation of the system and the CUTS component receives resource usage values as
feedback via the CUTS runtime framework.

Scatter [13], which is an automated deployment planning tool based on constraint logic program-
ming techniques. Scatter takes as input a model of a set of components, their functional
requirements (e.g. OS type, required libraries, and collocated components), their resource con-
sumption values, and a set of deployment targets (e.g. embedded microprocessors.) and produces
a valid assignment of components to nodes (a deployment plan). Moreover, if multiple valid
deployment plans exist, Scatter can attempt to find an optimized deployment plan with a user
provided a cost function.

Figure 6 shows Scatter and its related tools, which include the Scatter solver and Scatter’s
interface to the CUTS component emulation environment. First, the deployment planner

Approved for Public Release; Distribution Unlimited
12

provides Scatter the list of available hardware resources for running the components specified in
the software architecture. Second, Scatter invokes its constraint solver-based deployment planner
to derive a valid deployment of components to nodes. Scatter then invokes the CUTS emulation
environment to test the newly derived deployment plan and producing new performance data.
The performance data is then fed back either directly to developers (to modify the system archi-
tecture) or to Scatter to attempt to improve the deployment plan.

Figure 6: Scatter and Related Tools

The Scatter component receives the list of components as input, their modeled resource
consumptions, and the available hardware resources. The Scatter solver uses this information to
produce a new deployment plan designed to improve the end-to-end performance of the system’s
key critical paths. The new deployment plan produced by Scatter is used to create a new model
of the system, such as a PICML deployment and configuration based on new resource
consumption estimates, in CUTS. CUTS then emulates the new model and produces updated
end-to-end execution times and resource consumption values. The new emulation results are
returned as feedback to the original CUTS behavior models to refine the understanding of the
system’s execution properties.

 A GUTS-based model can receive (1) human-based input, such as a developer pointing and
clicking to create modeling elements, and (2) machine-based input, such as the output of
simulation results. For example, the CUTS behavior model can receive human-input in the form
of a human manually modeling the behavior specification of individual components, and
machine-input in the form of resource consumption values measured while emulating the system
on the target architecture.

Viewing each model as a component with input and output ports allows the seamless integration
of new DSMLs, such as a DSML for producing queuing models from emulation results
measured by CUTS, into GUTS to enhance multi-model collaboration. As shown in Figure 4, the
multiple components (i.e., DSMLs) used by GUTS are integrated via a model event bus. This
event bus receives notifications when the output of a model changes, such as when new
simulation results are generated. When a new event arrives, a lookup table is used to determine
which subscribers are registered for the event. Guards can also be associated with a subscriber to
filter the events sent.

Approved for Public Release; Distribution Unlimited
13

3.3 GUTS in the Context of the AFRL SPRUCE Program

We have conducted several experiments on our GUTS SEM tools described in Section 3.2 using
the Systems and Software PRoducibility Collaboration and Experimentation Environment
(SPRUCE) testbed developed as part of the OSD sponsored, AFRL executed, Software and
Systems Test Track (SSTT) program. The objective of SPRUCE is to provide a distributed, open
collaborative R&D environment were software-intensive systems productivity initiative (SISPI)
researchers can demonstrate, evaluate, and document the ability of their tools, methods,
techniques, and run-time technologies to yield affordable and predictable production of software-
intensive systems. SPRUCE provides the following four key capabilities to achieve this
objective:

 Ability to define and collaborate around challenge problems distilled from
representative DoD acquisition programs.

 Ability to define and collaborate around promising candidate solutions to said
challenge problems.

 Ability to define, conduct and collaborate around realistic experiments related to
challenge problems and candidate solutions.

 Ability to shepherd technology transition across the software producibility spectrum
and across operational domains.

To provide these capabilities, SPRUCE features a collaboration environment for bringing pro-
gram engineers and SISPI researchers together to develop, experiment, and transition
technologies. Figure 7 shows how the GUTS SEM tools relate to the broader SPRUCE
technology identification, creation, and transition process. The benefits of conducting experi-
ments on our SEM tools within the SPRUCE environment include (1) evaluating the efficacy of
GUTS in a representative “at-scale” environment, (2) serving as an early adopter exemplar to
encourage other researchers to leverage SPRUCE to showcase their research activities, and (3)
providing the opportunity to collaborate more effectively with other researchers, DoD system
integrators, and COTS technology suppliers interested in the work.

We have conducted evaluations and experiments throughout the effort. Initial experiments
conducted early in the project evaluated the candidate technology elements. The experiments
were defined in collaboration with SPRUCE collaborators and challenge problems specified on
the SPRUCE portal. Subsequently the experiments were executed to collect and evaluate (1)
functional and QoS attributes provided by the candidate technologies compared to net-centric
system requirements (such as the tactical), (2) relative performance of a candidate technology
compared to other candidate technologies, (3) coverage of use cases by the candidate technology,
and (4) richness of application programmatic interfaces for the candidate technology. The results
of these experiments were used to evaluate individual technologies, select among candidate
technologies, design integration strategies, and identify needed enhancements to the candidate
technologies.

Approved for Public Release; Distribution Unlimited
14

Figure 7: GUTS in the Context of AFRL SPRUCE

We have set up the necessary experimentation infrastructure to support the experiments at one or
more of several testbeds available to us under this project. Our testbed shown in Figure 8 is the
ISISlab at Vanderbilt University (www.dre.vanderbilt.edu/ISISlab), which is a dedicated cluster
of over 100 high-end x86 CPUs capable of running multiple operating systems, such as many
versions of Linux, Windows, Solaris, Mac OSX, and BSD UNIX. We have recently enhanced
this cluster with control software from Emulab, an NFS-sponsored testbed at the University of
Utah. The right hand side of Figure 8 shows the hardware and networking elements in ISISlab,
which are also part of the Spirals 0 and 1 Experiment Infrastructure for the SPRUCE project.

Figure 8: Testbed Environment for GUTS

Program
Engineers

Software
Producibility

Initiative

System Execution
Modeling Technologies

for Large-scale
Net-centric DoD Systems

Software Test Track
Program

GUTS
System Execution

Modeling Tools

SPRUCE Tool
Evaluation

Environment

Challenge-Problem-
Driven, At-Scale

Experiments

Systematic Transition of
Software Producibility

Technologies

Sponsors

Pro
duce

s

Produces
Yields

Yields

Yields

Sponsors

Technology
Researchers

Yields

Collaborations

New Test Track Ideas

New Software Research Ideas

Yields

Program
Engineers

Software
Producibility

Initiative

System Execution
Modeling Technologies

for Large-scale
Net-centric DoD Systems

Software Test Track
Program

GUTS
System Execution

Modeling Tools

SPRUCE Tool
Evaluation

Environment

Challenge-Problem-
Driven, At-Scale

Experiments

Systematic Transition of
Software Producibility

Technologies

Sponsors

Pro
duce

s

Produces
Yields

Yields

Yields

Sponsors

Technology
Researchers

Yields

Collaborations

New Test Track Ideas

New Software Research Ideas

Yields

Approved for Public Release; Distribution Unlimited
15

4. Automating Configurations using Model-driven Engineering

This section describes the role of model driven engineering in automating configurations for
DoD-centric systems.

4.1 Introduction

Distributed real-time embedded (DRE) systems (such as avionics systems, satellite imaging
systems, smart cars, and intelligent transportation systems) are subject to stringent requirements
and constraints. For example, timing constraints require that tasks be completed by real-time
deadlines. Likewise, rigorous quality of service (QoS) demands (such as dependability and
security) require a system to recover and remain active in the face of multiple failures [17]. In
addition, domain-specific constraints (such as the need for power management in embedded
systems) must be satisfied. To cope with these complex issues, applications for DRE systems
have traditionally been built from scratch using specialized, project-specific software
components that are tightly coupled with specialized hardware components [18].

To reduce development cycle-time and cost, the new generation of DRE systems are increasingly
being developed by configuring applications from multiple layers of commercial-off-the-shelf
(COTS) hardware, operating systems, middleware components, and mission level software
components [19]. These types of DRE systems require the integration of 100’s-1,000’s of
software components that provide distinct functionality (such as I/O, data manipulation, and data
transfer) that must work in concert with other software to accomplish mission-critical tasks (such
as self-stabilization, error notification, and power management). The software configuration of a
DRE system directly impacts its performance, cost, and quality.

As COTS-based DRE systems increase in size and complexity the traditional design techniques
based on complete in-house proprietary construction are not sufficient. Moreover, the traditional
techniques cannot configure COTS-based DRE systems that can simultaneously address the
stringent requirements and constraints outlined above [20]. The objective of DRE system
configuration is to determine exactly what combination of hardware/software components will
provide the requisite QoS. In addition, the combined purchase cost of the components cannot
exceed a predefined amount, referred to as the project budget.

An overall DRE system configuration can be split into a software configuration and a hardware
configuration. A valid software configuration must meet all real-time constraints (such as
minimum latency and maximum throughput), provide required functionality, and also satisfy all
domain-specific design constraints while not exceeding the available budget for purchasing
software components. Similarly, the hardware configuration must meet all constraints without
exceeding the available hardware component budget.

It is likely that for each portion of desired software functionality, there are multiple COTS
components that can perform the desired function. Each option differs in QoS provided, the
amounts/types of computational resources required, and purchase cost. The complexity
associated with DRE systems composed of 100’s-1,000’s of components makes it hard to find
configurations that meet complex QoS constraints. Creating and maintaining error-free

Approved for Public Release; Distribution Unlimited
16

configurations is also hard due to the large number of complex configuration rules and QoS
requirements.

Solution approach Model-driven automated configuration techniques. This section
presents techniques and tools that leverage the Model Driven Architecture (MDA) paradigm to
determine valid DRE system configurations that fit budget limits. To help address the difficulty
of DRE system configuration, DRE system designers can use MDA to visualize configuration
options/rules, verify configuration validity, and compare potential DRE system configurations.

MDA is a design approach for specifying system configuration constraints with platform-
independent models (PIMs). Each PIM can be used as a meta-modeling for constructing
platform-specific models (PSMs) [21]. These PSMs can be analyzed to determine DRE system
configurations that meet budget constraints. After a PSM is determined for implementation, it
can be used as a blue print for constructing an actual DRE system implementation that meets all
design constraints specified within the PIM [7]. As DRE system requirements evolve and
additional constraints are introduced, the PIM can be modified and new PSMs constructed.
Systems that are constructed using these PSMs can reflect additional constraints and require-
ments more readily than those developed manually.

We conducted a survey of Meta-modeling techniques for creating DSMLs that can be applied to
DRE system configuration and demonstrated the creation of a DSML for modeling hard-
ware/software component options, resource constraints, and budgetary constraints. We also show
how to utilize modeling environments to create models that adhere to the DSML for DRE system
configuration. In addition, we demonstrate an interpreter that can examine models of
hardware/software DRE system configuration options, generate code, which can ultimately be
used to produce output models that provide valid, high-quality large-scale DRE system
configurations.

4.2 Large-scale DRE System Configuration Challenges.

This section presents the criteria for valid DRE system configurations, describes the challenges
that make determining configurations hard, and provides a survey of current techniques and
methodologies for DRE system configuration. Software and hardware components often have
complex interdependencies on the consumption and production of resources (such as processor
utilization, memory usage, and power consumption). An overall DRE system configuration
consists of a valid hardware configuration and valid software configuration in which the
computational resource needs of the software configuration are provided by the computational
resources produced by the hardware configuration. If the resource requirements of the software
configuration exceed the resource production of the hardware configuration, a DRE system will
not function correctly and is considered invalid.

Consider configuration options for a satellite imaging system case study we used. This DRE
system consists of two software components: an image processing algorithm and software that
defines image resolution capabilities. There are multiple options for each software component,
each of which provides a different level of service. For example, there are three options for the
image resolution component. The high-resolution option offers the highest level of service, but
also requires dramatically more RAM and CPU to function than the medium or low-resolution

Approved for Public Release; Distribution Unlimited
17

options. If the resource amounts required by the high-resolution option are not supplied, then the
component cannot function, preventing the system, as a whole, from functioning correctly. If
RAM or CPU resources are scarce, the medium or low-resolution option should be chosen.
However an additional design constraint may require at least medium image resolution.
Assuming sufficient resources for only the medium and low-resolution options, the only option
that satisfies all constraints is the medium image resolution option.

Further, the inclusion of a component in a configuration may prohibit or require the use of one or
more components. Certain software components may have compatibility problems with other
components. For example, each of the image resolution components may be a product of
separate vendors. As a result, the high and medium-resolution component may be compatible
with any image processing component while the low-resolution component may only be
compatible with image processing components made by the same vendor. These compatibility
issues add another level of difficulty to determining valid DRE system configurations.

Large-scale DRE systems may consist of many software and hardware components with multiple
options for each component, resulting in an exponential number of potential configurations. Due
to the multiple design, real-time, and resource constraints discussed earlier, it is simple to see
that arbitrarily selecting components for a configuration is ineffective. That is, the huge mag-
nitude of the solution space prohibits the use of manual techniques. Automated techniques, such
as Constrained Linear Programming (CLP), use Constraint Satisfaction Problems (CSPs) to
represent system configuration problems [22][23]. These techniques are capable of determining
optimal solutions for small-scale system configurations but require the examination of all
potential system configurations. Techniques utilizing CSPs are ideal, however, for system
configuration problems involving a small number of components as they can determine an
optimal configuration (should one exist) in a short amount of time.

The exhaustive nature of conventional CSP-based techniques, however, renders them ineffective
for large-scale DRE system configuration. Without tools to aid in large-scale DRE system
configuration, it is a struggle for designers to determine any valid large-scale system
configuration. Even if a valid configuration is determined, other valid system configurations may
exist with vastly superior performance and dramatically less financial cost. Further, the constant
development of additional technologies, legacy technologies becoming unavailable, and domain
specific and design objectives constantly in flux, valid configurations can quickly become
invalid, requiring that new configurations be discovered rapidly. It is thus imperative that
advanced design techniques are developed to identify and validate large-scale DRE system
configurations.

The following is a summary of key challenges that make it particularly hard to configure DRE
systems using COTS components:

 Choosing between multiple levels of service. Software components provide differing levels
of service. For example, a designer may have to choose between three different software
components that differ in speed and throughput. In some cases, a specific level of service
may be required, prohibiting the use of certain components.

Approved for Public Release; Distribution Unlimited
18

 Complex resource interdependencies. Hardware components provide the computational
resources that software components require to function. If the hardware does not provide an
adequate amount of each computational resource, some software components cannot
function. An overabundance of resources indicates that some hardware components have
been purchased unnecessarily, wasting funds that could have been spent to buy superior
software components or set aside for future projects.

 Satisfying differing resource requirements. Each software component requires
computational resources to function. These resource requirements differ between
components. Often, components offering higher levels of service require larger amounts of
resources and/or cost more to purchase. Designers must therefore consider the additional
resulting resource requirements when determining if a component can be included in a
system configuration.

 Meeting budgetary constraints. Each component has an associated purchase cost. The
combined purchase cost of the components included in the configuration must not exceed the
project budget. It is therefore possible for the inclusion of a component to invalidate the
configuration if its additional purchase cost exceeds the project budget regardless of
computational resources existing to support the component.

 Choosing from many components. Large-scale DRE systems can require hundreds to
thousands of components to function. For each component there may be many options
available for inclusion in the final system configuration. Due to the complex resource
interdependencies, budgetary constraints, and domain- specific design constraints it is hard to
determine if including a single component will invalidate the system configuration. Even
automated techniques require years or more to examine all possible system configurations for
such problems.

4.3 Reviewing Literature on System Configuration Optimization.

This section surveys various DRE system configuration problems and model analysis techniques,
including hardware/software co-configuration problems and heuristic algorithms for resource-
constrained configuration. We describe several different types of DRE system configuration
problems. We also examine several techniques that have been applied to aid in the determination
of optimal or near-optimal DRE system configurations, such as Constrained Linear Programming
and Constraint Satisfaction Problems. Finally, we will describe how MDA can be used to
mitigate many of the problems associated with these techniques.

Feature models are visual diagrams that have been used to model Software Product Lines (SPLs)
as well as system configuration problems. Czarnecki et al. use feature models to describe the
configuration options of systems [24]. Feature models are represented using tree structures with
lines, representing functional constraints that are connected to the various candidates for
inclusion in an SPL, known as features. The feature model uses functional constraints to
illustrate the effects that selecting one or more features have on the validity of selecting other
features. As a result, it is obvious if the inclusion of a feature will result in an invalid system
configuration. Czarnecki also presents staged-configuration, an incremental technique for
manually determining valid feature selections. This work, however, cannot be directly applied to

Approved for Public Release; Distribution Unlimited
19

the configuration of large-scale DRE system configuration because it does not consider resource
constraints. Also, since staged-configuration is not automated, it would take a prohibitive amount
of time to determine valid system configurations.

Benavides et al. introduce the extended feature model, an augmented feature model with the
ability to more articulately define features and provide additional constraints [23]. Additional
descriptive information, called attributes, can be added to define one or more parameters of each
feature. For example, the resource consumption and cost of a feature could be defined by adding
attributes for each feature. Each of these attributes would list the type of resource and the amount
consumed or provided. Additional constraints can be defined by adding extra-functional features.
Extra-functional features define rules that dictate the validity of sets of attributes. For example,
an extra-functional feature may require that the total cost of a set of features describing
components is less than that of a feature that defines the budget. Therefore any valid feature
selection would satisfy the constraint that the collective cost of the components is less than the
total project budget.

Benavides et al. also provide a methodology for mapping extended feature models onto
Constraint Satisfaction Problems (CSPs). A CSP is a set of Boolean variables with multiple
constraints that define the values that the variables can take. Attributes and extra-functional
features are maintained in the mapping. As a result, solutions that satisfy all extra-functional
features and basic functional constraints can be found automatically with the use of commercial
CSP solvers. Further, these solvers can be configured to optimize one or more attributes, such as
the minimization of cost. These techniques, however, require the examination of all potential
solutions, resulting in a system configuration that is not only valid, but also optimal.

While extended feature models and the techniques for determining valid configurations by
converting them to CSPs does account for resource and budget constraints, the process is not
appropriate for large-scale DRE system configuration problems. The exhaustive nature of CSP
solvers often requires that all potential solutions to a problem be examined. Since the number of
potential system configurations is exponential in regards to the number of potential components,
the solution space is far too vast for the use of exhaustive techniques as they would require a
prohibitive amount of time to determine a solution.

To circumvent the unrealistic time requirements of exhaustive search algorithms, previously we
have examined approximation techniques for determining valid feature selections that satisfy
multiple resource constraints using Filtered Cartesian Flattening (FCF) [25]. Approximation
techniques do not require the examination of all potential configurations, allowing solutions to be
determined with much greater speed. While the solutions are not guaranteed to be optimal, they
are often found to be optimal or extremely near optimal.

FCF converts extended feature models into Multiple-choice Multi-dimensional Knapsack
Problems (MMKP). MMKP problems, as described by Akbar et al are an extension of the
Knapsack Problem (KP), Multiple-Choice Knapsack Problem (MCKP) and Multi-Dimensional
Knapsack Problem (MDKP) [26]. Akbar et al. provide multiple heuristic algorithms, such as I-
HEU and M-HEU for rapidly determining near optimal solutions to MMKP problems.

Approved for Public Release; Distribution Unlimited
20

With FCF, approximation occurs in two separate steps. First, all potential configurations are not
represented in the MMKP problems. For example, if there is an exclusive-or relationship
between multiple features, then only a subset of the potentially valid relationships may be
included in the MMKP problem. This pruning technique is instrumental in restricting problem
size so that solving techniques can be used rapidly. Second, heuristic algorithms, such as M-
HEU can be used to determine a near-optimal system configuration. M-HEU is a heuristic
algorithm that does not examine all potential solutions to an MMKP problem, resulting in faster
solve time, thus allowing the examination of considerably larger problems. Due to these two
approximation steps, FCF can be used for problems of considerably larger size compared to
methods utilizing CSPs. Figure 9 shows the distribution of the number of problems solved for a
model with 10,000 features.

While FCF is capable of determining valid large scale DRE system configurations, it still makes
many assumptions that may not be readily known by system designers. For example, FCF
requires that the project budget for purchasing hardware and the project budget for purchasing
software components be known ahead of time. The best way to split the project budget between
hardware and software purchases is dictated by the configuration problem being solved. For
example, if all of the hardware components are cheap and provide a huge amount of resources
while the software components are expensive, it would not make sense to devote half of the
project budget to hardware and half to software. A better system configuration may result from
devoting 1% of the budget to hardware and 99% to software.

Figure 9: FCF Optimality with 10,000 Features

The Allocation baSed Configuration ExploratioN Technique (ASCENT) was developed and is
capable of determining valid system configurations while also providing DRE system designers
with favorable ways to divide the project budget [27]. ASCENT takes an MMKP hardware
problem, MMKP software problem and a project budget amount as input. Due to the speed and
performance provided by the M-HEU algorithm, ASCENT can examine many different budget
allocations for the same configuration problem. ASCENT has been used for configuration

Approved for Public Release; Distribution Unlimited
21

problems with 1000’s of features and is over 98% optimal for problems of this magnitude,
making it an ideal technique for large-scale DRE system configuration.

4.4 MDE-based Configuration Modeling Methods and Tools.

This section describes meta-modeling and modeling techniques in the domain of DRE system
configuration. Due to the complexities accompanying system configuration with COTS
components (such as differing levels of service, complex resource interdependencies, differing
resource requirements, budgetary constraints, and a multitude of component candidates),
designers using manual techniques often unknowingly invalidate system configurations. MDA
tools allow designers to manipulate problem entities and compare potential solutions in an
environment that ensures various design rules are enforced, thereby allowing designers to focus
on other problem dimensions, such as performance optimization or minimization of
computational resources.

To create an MDA tool for determining DRE system configurations, we must first define several
rules for DRE system configuration. First, we need to define the entities that are involved in
DRE system configuration. For example, at the most basic level, DRE system configuration
consists of hardware and software components. Second, we must define how these entities
interact. For example, we can specify that hardware components provide computational
resources and that software components consume computational resources. Finally, we need a
way to define the constraints that must be maintained as these entities interact for a system
configuration to be valid. For example, we may specify that a software component that interacts
with a hardware component must be provided with sufficient computational resources to function
by the hardware component.

This collection of rules governing the entities, interactions and constraints of the problem we are
examining is defined as a Domain Specific Modeling Language, or DSML. Once we have
defined a DSML, we can create model instances that enforce the rules and constraints defined by
the DSML. Most nontrivial problems, however, require multiple entities, various types of
interactions, and complex constraints. As a result, defining the DSML can be a confusing,
arduous task. Fortunately, meta-modeling tools exist that provide a clear and simple procedure
for creating Platform Independent Models (PIMs) or meta-modelings. These PIMs can then be
used by modeling tools to define the DSML for created model instances, or Platform Specific
Models (PSMs).

Tools for generating PIMs provide several advantages over defining DSMLs manually. First,
meta-modeling DSMLs for constructing a PIM can prevent defining rules that are contradictions
or inappropriate. Also, by using a meta-modeling tool for defining PIMs the DSML can easily be
augmented or altered should the domain or other problem parameters change. Finally, the same
complexities that are inherent to creating PSMs are also present in creating PIMs and often
amplified by the additional abstraction required for creating PIMs. Meta-modeling tools use an
existing DSML that defines the rules for creating meta-models, thereby enforcing the complex
constraints and facilitating quick, accurate meta-model design.

Many tools exist for the definition of PIMs and creation of PSMs. Due to space constraints, we
only examine the Generic Eclipse Modeling System (GEMS) [28] and the Generic Modeling

Approved for Public Release; Distribution Unlimited
22

Environment (GME) [10]. GEMS is a meta-modeling tool that leverages the Eclipse Modeling
Framework (EMF) and the Graphical Modeling Framework (GMF). GEMS uses a drag and drop
visual interface that allows users to define meta-models without writing a single piece of code.
The DSML for defining the meta-model prevents the user from making many simple mistakes,
allowing the user to quickly construct a modeling tool for a specific domain. After the meta-
model is constructed, the meta-model is analyzed by an interpreter. Code generators create all the
necessary Java source files for defining the DSML for a domain specific modeling tool adhering
to the rules and constraints defined by the meta-model.

GEMS, compared to GME, is simplified so that meta-models can be created rapidly. Figure 10
shows the DSML for describing a deployment scenario. The entities that interact within the
meta-model are called classes. Each GEMS meta-model has a root class that serves as a
container for the rest of the meta-model elements. In this case the meta-model is for a
deployment plan, so the root container is called “DeploymentPlan”. All classes that are a child of
this root class are entities that are relevant to creating a valid deployment plan. “Node” and
“Component” for example are children of the “DeplyomentPlan”, as defined by the arrows
leading from “Node” and “Component” to the root class. Therefore, the final modeling tool for
creating deployment plans will permit the inclusion of one or more hardware “Nodes’ and
software “Components”.

Now that we have all of the necessary entities for the modeling tool we must define the rules that
govern the interactions of these entities. For example, we must define the relationship between
hardware nodes and software components in which the software components consume resources
of the hardware nodes. Before we can do this, however, we must define an attribute that
specifies the resource production values of the hardware nodes and the resource consumption
values of the software nodes. Once we have defined an attribute and associated it with a class,
we can include the attribute in the interaction definition.

Figure 10: Meta-modeling Defined using GEMS

Approved for Public Release; Distribution Unlimited
23

An interaction is defined by adding a connection to the meta-modeling. The connection specifies
the rules for connecting entities in the resulting PSM. For example, Figure 10 defines a
“deployed on” connection between software components and hardware nodes. Within the
connection, we can define additional constraints that must be satisfied for two classes to be
connected. For example, for a software component to be connected to a hardware node with a
“deployed on” connection the resource consumption attribute of the software component could
not exceed the attribute of the hardware node that defines the amount of resource production.

Once the meta-modeling is completed, it is interpreted to create the source code for a modeling
tool to enforce it. An example of the tool for modeling deployment plans is shown in Figure 11.
In this figure, software components are connected to the hardware nodes on which they are
deployed. If the user attempts to connect a software component to a hardware node that does not
have sufficient resources for connecting the software component, the tool will not allow a
connection to be made. A user can quickly create new deployment plans by dragging additional
software components and hardware nodes from the toolbar. The user can then examine potential
deployments simply and determine their validity by simply attempting to connect software
components to hardware. Since the resource constraints and domain constraints are defined in the
meta-modeling and enforced by the modeling tool, the user can create and validate deployments
without having to be cognizant of these complex constraints, resulting in easier, faster
deployment planning.

Figure 11: GEMS Deployment Plan Model

The Generic Modeling Environment (GME) [10] is another modeling toolkit for creating domain
specific models. The two principal components of GME, GMeta and GModel, work together to
provide this functionality. GMeta is a graphical tool for constructing meta-modelings. GMeta
divides meta-modeling design into 4 separate sub-meta-modelings: the Class Diagram,
Visualization, Constraints, and Attributes. The Class Diagram defines the entities within the
model, known as models, atoms, and first class objects, as well as their structural hierarchy and
the connections that can be made between them. The Visualization sub-meta-modeling defines
different aspects, or filters, for viewing only certain entities within the model. For example, if

Approved for Public Release; Distribution Unlimited
24

one was defining a meta-modeling for a finite state machine, an aspect could be defined in the
Visualization sub-meta-modeling that would only display accepting states in the finite state
machine model. The Constraints sub-meta-modeling allows the application of Object Constraint
Language (OCL) constraints to meta-modeling entities. Continuing with the finite state machine
meta-modeling example, one might add a constraint that only a single starting state may exist in
the model. To do this, the user would add a constraint in the Constraints sub-meta-modeling, add
the appropriate OCL code to define the constraint, and then connect it to the entity to which it
applies. Finally, the Attributes sub-meta-modeling allows additional data, known as attributes, to
be defined and associated with other meta-modeling entities defined in the Class Diagram.

Once the meta-modeling has been constructed using GMeta, the interpreter must be run to
convert the meta-modeling into a GME paradigm. This paradigm can then be loaded with GME
and used to created models that adhered to the DSML defined by the meta-modeling. The user
may then created models with the assurance that the design rules and domain specific constraints
defined within the meta-modeling will be satisfied. Since GModel takes care of enforcing all
constraints, the designer can use the graphical user interface to rapidly create and experiment
with various models without the overhead of monitoring for constraint violations. If at any point
the domain or design constraints of the model change, the meta-modeling can be reloaded,
altered and interpreted again to change the GME paradigm appropriately. As a result, designers
can easily examine scenarios in which constraints differ, giving a broader overview of the
domain design space.

4.5 Case Study

In Section 4.2 we discussed the challenges of DRE system configuration. For problems of non-
trivial size, these complexities proved to be too difficult to overcome without the use of
programmatic techniques. In Section 4.3 we introduced several automated techniques for
determining valid DRE system configurations including the Allocation baSed Configuration
EsploratioN Technique (ASCENT). ASCENT is also capable of providing additional design
space information, such as how to allocate a project budget, which is extremely valuable to
designers.

ASCENT was implemented purely programmatically in Java. Due to this, the entire
configuration problem, including external resources, constraints, software components and
hardware components along with their multiple unique resource requirements had to be defined
through multiple lines of complex code. As a result, the preparation time for a single
configuration problem takes a considerably long amount of time. In addition, designers cannot
easily manipulate many of the problem parameters to examine “what if” scenarios. The use of
Model Driven Architectures, however, can circumvent these shortcomings of a purely
programmatic interface. We utilized GME to construct a meta-modeling for describing a DSML
for DRE system configuration and used this paradigm to experiment with the ASCENT
Modeling Platform (AMP). Several benefits were observed as a result of using GME to construct
an MDE for DRE system configuration as follows:

 Visual representation – Simply having a visual representation of the hardware and software
components makes it significantly easier to grasp the problem, especially to users with
limited experience in DRE system configuration.

Approved for Public Release; Distribution Unlimited
25

 Ease of configuration – In addition to visually representing the problem, being able to
quickly and easily change configuration details (budget, constraints, components, resource
requirements etc.) makes the analysis much more powerful.

 Generational analysis – The model may be fed a previous solution as input, enabling
designers to examine possible upgrade paths for the next budget cycle. These upgrade paths
can be tracked for multiple generations, meaning that the analysis can determine the best
long-term solutions. This is a capability that was not previously available with ASCENT and
would have been considerably more difficult to implement without the use of GME.

 Easily Extensible- It is simple to add additional models and constraints to the existing meta-
modeling. As DRE system configuration domain specific constraints are introduced, the
existing meta-modeling can be altered to enforce these additional constraints in subsequent
models. Since most DRE system configuration problems only slightly differ, existing meta-
modelings can be reused to rapidly construct appropriate DSMLs.

 Simplifies Problem Creation – Allows user to drag and drop to create the problem instance
instead of writing the 300+ required lines of complex Java code. The advantages of using a
simple graphical user interface are two-fold: First, designers do not have to take the time to
type such a large amount of code. Second, while typing this large amount of code designers
will likely make mistakes. While many of these mistakes may be caught by the compiler, it is
also likely that domain specific constraints will be inadvertently violated. Since GME
enforces the design rules defined within the meta-modeling, it is not possible for the
designers using GME to unknowingly make such a mistake while constructing a problem
instance.

In order to expand the analytical capabilities of ASCENT, GME was utilized to provide an easily
configurable, visual representation of the problem. Using these new features, it is possible to see
a broader, clearer picture of the total design process as well as the global effects of even minor
design decisions. We create a PIM defining a DSML for DRE system configuration using Me-
taGME, a Meta-modeling environment for constructing DSMLs. Meta-models created with
MetaGME can be used in conjunction with GME to create models that can be interpreted using a
BON2 interpreter.

Figure 12: GME Class View Meta-modeling of ASCENT

Approved for Public Release; Distribution Unlimited
26

The meta-modeling was designed and implemented using GME. Figure 12 shows the Class
Diagram portion of the AMP meta-modeling. Next, a BON2 interpreter was written in C++ to
handle model instances. This interpreter traverses the model and creates an XML representation
of the model, which is output to a file. This XML file matches a previously defined schema for
use with the Castor XML binding libraries, set of library for demarshalling XML data into Java
objects. The interpreter then makes a system call to execute the ASCENTGME.jar, passing in the
XML file as an argument. Within ASCENTGME.jar, several things happen. First, the XML file
is demarshaled into Java objects. A class then uses these objects to create two complex MMKP
Problem instances. These two problem instances, along with a total budget value, are passed to
ASCENT.

ASCENT executes, and returns the best hardware and software solutions, as well as their
combined cost and combined value as shown in Figure 13. Next, a First Fit Decreasing (FFD)
Bin-packer uses these solutions along with their resource requirements to determine a valid
deployment. This deployment data, along with the total cost, total value, hardware solution and
software solution, is then written to a configuration file. The interpreter, having halted until the
system call to execute the jar file terminates, then parses this configuration file. Using this data,
the ASCENT solution and deployment are written back into the model. These solutions can then
be examined and analyzed by designers. Designers can then change problem parameters, execute
the interpreter once again, and examine the effects of the changes to the problem on the solution
generated. This allows designers to rapidly examine multiple DRE system configuration design
scenarios, resulting in substantially increased knowledge of the DRE system design space.

Figure 13: GME Model of Configuration Solution with AMP

4.6 Concluding Remarks

Determining valid configurations for Distributed Real-time Embedded systems is hard.
Designers must take into account a myriad of constraints including resource constraints, real-
time constraints, QoS constraints, and other domain specific constraints. The difficulty of these
tasks is exacerbated by the presence of a plethora of potential COTS components for inclusion in
the configuration, with each providing varying quality of service and functionality, and requiring

Approved for Public Release; Distribution Unlimited
27

different amounts of computational resources and carrying a financial cost for purchasing. The
high availability of COTS components results in an exponential number of potential DRE system
configurations. As a result, manual techniques for determining valid DRE system configurations
are far too cumbersome. Even exact automated techniques, such as the use of Constraint
Satisfaction Problems (CSPs) require a prohibitive amount of time to execute. Approximation
techniques, such as ASCENT, however, do not require an exhaustive search of the vast design
space allowing a much more rapid execution while often resulting in solutions with over 95%
optimality.

The use of complex programmatic techniques, however, often have a steep learning curve and
require large amounts of coding to construct a problem for execution. Due to the complex coding
involved, these techniques carry the added burden of being error prone when defining problem
instances. To combat these difficulties, we utilized an MDA-based approach that utilized GME
for constructing problem instances and displaying valid solutions for DRE system
configurations. The following are lessons learned during the creation of the ASCENT Modeling
Platform (AMP):

 Rapid problem construction - Through the use of GME, problems could be constructed in a
fraction of the time of using programmatic techniques.

 Reduced errors – Since GME uses a DSML that enforces the many complex design
constraints associated with DRE system configuration, users of AMP are prevented from
constructing a configuration problem that is invalid.

 Facilitated design space exploration – Solutions are posted directly back into the model for
analysis by system designers. Designers can then change problem parameters within the
model and execute the interpreter to explore multiple configuration scenarios, resulting in an
increased understanding of the design space.

 Multiple Execution Options - Currently ASCENT is the only technique that is executed
upon interpreting models. Other techniques, such as the use of CSP solvers, should be
implemented to determine solutions to for problems with an appropriately reduced number of
candidate components.

The current version of AMP with example code is available in open-source form at ascent-
design-studio.googlecode.com.

Approved for Public Release; Distribution Unlimited
28

5. Extending Model-driven Configuration Automation to Product
Line Architectures

This section extends our work on model-driven configuration automation to product line
architectures, which are common in DoD systems.

5.1 Introduction

Emerging trends and challenges. Product-line architectures (PLAs) enable the development of
a group of software packages that can be retargeted for different requirement sets by leveraging
common capabilities, patterns, and architectural styles. Although PLAs simplify the development
of new applications by reusing existing software components, they require significant testing to
ensure that valid variants function properly. Not all variants that obey the compositional rules of
PLA function properly, which motivates the need for powerful testing methods and tools. For
example, connecting two components with compatible interfaces can produce a non-functional
variant due to assumptions made by one component, such as boundary conditions, that do not
hold for the component to which it is connected.

The numerous points of variability in PLAs also yield variant configuration spaces with
hundreds, thousands, or more possible variants. It is therefore crucial that PLAs undergo
intelligent testing of the variant configuration space to reduce the number of configurations that
must be tested. A key challenge in performing intelligent testing of the solution space is
determining which variants will yield the most valuable testing results, such as performance data.

Solution approach → Model-driven testing and domain analysis of product-line
architectures. Model-driven Architectures (MDA) are a development paradigm that employs
models of critical system functionality, model analysis, and code generation to reduce the cost of
implementing complex systems. MDA offers a potential solution to the challenges faced in
testing large-scale PLAs. MDA can be used to model the complex configuration rules of a PLA,
analyze the models to determine effective test strategies, and then automate test orchestration.
However, effectively leveraging MDA to improve test planning and execution requires
determining precisely what PLA design properties to model, how to analyze the models, and how
best to leverage the results of these analyses.

5.2 PLA Modeling, Domain Analysis, and Testing Challenges

Although PLAs can increase software reuse and amortize development costs, PLA configuration
spaces are hard to analyze and test manually. Deploying, configuring, and testing a PLA in
numerous configurations without intelligent modeling, domain analysis, and automation is
expensive and/or infeasible. Large-scale product variants may consist of thousands of component
types and instances that must be tested. This large solution space presents the following key
challenges to developing a PLA:

 Challenge 1: Manually managing a PLA’s configurations and constraints. Traditional
processes of identifying valid PLA variants involve software developers determining
manually the software components that must be in a variant, the components that must be

Approved for Public Release; Distribution Unlimited
29

configured, and how the components must be composed. Such manual approaches are
tedious error-prone, and do not scale well.

 Challenge 2: Determining what PLA configurations to test through domain analysis.
With hundreds or thousands of potential configurations, testing each possible configuration
may not be feasible or cost effective. Developers must determine which PLA configurations
will yield the most valuable information about the capabilities of different regions of the PLA
configuration space. Determining how to perform this domain analysis is hard.

 Challenge 3: Managing the complexity of configuring, launching, and testing hundreds
of valid configuration and deployment. Ad hoc techniques often employ build and
configuration tools, such as Make and Another Neat Tool (ANT), but application developers
still must manage the large number of scripts required to perform the component instal-
lations, launch tests, and report results. Developing custom deployment and configuration
scripts for each variant leads to a significant amount of reinvention and rediscovery of
common deployment and configuration processes. As the number of valid variants increases,
there is a corresponding rise in the complexity of developing and maintaining each variant’s
deployment, configuration, and testing infrastructure. Automated techniques can be used to
manage this complexity.

 Challenge 4: Evolving deployment, configuration, and testing processes as a PLA
evolves. A viable PLA must evolve as the domain changes, which presents significant
challenges to the maintenance of configuration, deployment, and testing processes. Small
modifications to composition rules can ripple through the PLA, causing widespread changes
in the deployment, configuration, and testing scripts. Maintaining and validating the large
configuration and deployment infrastructure is hard.

5.3 Model-driven Testing and Domain Analysis Techniques for Product-
line Architectures

This section introduces modeling techniques for capturing PLA configuration rules and then
describes how these models can be annotated with results from testing. It also presents
constraint-based optimization techniques that can be used to analyze the model to derive
configurations to test.

3.1 Test Automation from Feature Models.

To address Challenge 3, which is the complexity of deploying, configuring, and testing a PLA,
we have developed FireAnt [29]. FireAnt is an MDA tool that allows application developers to
describe the components that form the common building blocks of their PLA and to construct
feature models specifying how the blocks can be composed to form valid variants. FireAnt
significantly reduces the cost of testing a PLA in the following key ways:

 Test, Deployment, and Configuration Infrastructure Generation. FireAnt allows
developers to describe the target hardware where variants will be deployed. Using a target
hardware definition and the artifact mapping, FireAnt can automatically package all the
archive files required to deploy each variant, as well as generate the required configuration

Approved for Public Release; Distribution Unlimited
30

scripts. These scripts may be implemented in a variety of languages. Currently, FireAnt
provides bindings for generating ANT build files.

 Test Automation. FireAnt can use CSP configuration derivation techniques to generate a
global configuration script that remotely deploys, configures, and tests variants automatically
on each possible hardware target.

FireAnt was developed using the Generic Eclipse Modeling System (GEMS) [28], which is an
open-source MDA environment built as an Eclipse plug-in. A GEMS-based meta-modeling
describing the domain of PLA deployment, configuration, and testing was constructed and
interpreted to create the FireAnt domain-specific modeling language (DSML) for PLAs.
FireAnt’s modeling environment uses GEM’s support for multiple views to capture the feature
model, deployment, configuration, and testing requirements of a PLA. The remainder of this
section discusses how each of these views can be used to manage the complexity of testing a
PLA and how the view addresses each of the challenges described in Section 5.2.

5.3.1 FireAnt Feature Modeling

To facilitate the analysis of the variant solution space and address Challenge 1 requires a formal
grammar to describe the structure of the PLA and its valid configurations. This customization
grammar can then be used to automatically generate and explore the variant solution space using
CSP techniques.

To capture a formal definition of the PLA, the components on which it is based must be
modeled. The Feature element is the basic building block in the Logical Composition View. A
Feature represents an indivisible unit of functionality, such as an EJB or CORBA component. A
configuration is a valid composition of Features that produces a complete set of application
functionality. Each configuration may require different source artifacts depending on the features
that it contains.

The feature model rules are specified through composition predicates. FireAnt supports that
standard feature modeling constraints for AND, Exclusive OR and optional features. The
children of each feature are connected through a composition predicate to their parent to specify
the rules governing their selection. By capturing PLA compositional variability in a feature
model through the Logical Composition tree, developers can formally specify how valid variants
are composed. With a formal specification of the variant construction rules, FireAnt can
automatically explore the variant solution space to discover all valid compositional variants of
the PLA.

5.3.2 Dependency and Deployment Views

Simply capturing the configuration rules for the PLA is not sufficient to automate deployment
and testing. FireAnt must have a specification of how the features in the feature model map
down to individual source artifacts. For example, if the ConstraintsOptimizationModule is
selected, what Java jar files need to be packaged into the final variant that is tested?

Approved for Public Release; Distribution Unlimited
31

To automate the packaging and configuration of variants and address Challenge 3, a dependency
model must be developed to associate each feature with physical artifacts, such as jar files, it
relies on. This mapping from physical artifacts to PLA components can be used to automatically
manage and package the artifacts and configuration scripts required for each variant. The
dependency model is a platform-specific model in the MDA paradigm.

In distributed applications, developers may need to test the deployment of the application across
different numbers and configurations of hardware. FireAnt’s Physical Deployment View allows
developers to specify rules on how features and their associated artifacts can be mapped to a
series of remote hosts. Because the physical deployment view is not tied to any specific hardware
or software implementation, it is a platform-independent model. FireAnt then takes each of these
possible deployment variants and determines the unique packaging combinations of artifacts that
are required for all possible valid deployments. Each unique package is called an egg.

The Physical Composition View shows which physical artifacts are associated with each egg.
Individual zip archives can be created for each deployment package by traversing the Physical
Composition View trees. This view manages the complexity of determining what physical
artifacts should be present in for the deployment of each variant’s features to a host. FireAnt can
automatically collect and zip all of the required artifacts for a variant’s Assemblies by traversing
the Physical Composition Tree.

5.4 Results Summary

FireAnt uses the techniques described in Section 5.3 to automate (1) the generation of
deployment scripts for variants, (2) the packaging of artifacts for variants, and (3) the testing of
variants. These capabilities reduce the upfront cost, A, and enable rigorous testing of PLAs. They
also address each of the four key challenges outlined in Section 5.2.

Due to the large number of variants it becomes costly for PLA developers to manually find and
manage all possible variants without MDA tool support. This complexity increases the initial
cost, A, of developing a PLA testing infrastructure since a developer must find all valid variants
and determine which tests are required to ensure the proper functioning of each. In other words,
A ≥ Dv + Ov, where Dv is the time required to find each valid variant and Ov is the time required
to generate an orchestration script for each variant that will execute the proper tests.

FireAnt reduces the initial cost A by automatically exploring the solution space and producing
visualizations of valid variants for the developer. These capabilities significantly aid developer
understanding of PLA variability and enables for the automated testing and packaging of each
variant. Without automating the identification of variants of the PLA to test, it is hard to ensure
that the PLA is tested properly, which is important in mission-critical domains.

5.5 Concluding Remarks

Product-line architectures (PLAs) can significantly improve the reuse of software components
and decrease the cost of developing applications. The large number of valid variations in a PLA
must be tested to ensure that only working configurations are used. Due to the large solution
spaces it is infeasible or overly costly to use traditional ad hoc methods to test a PLA’s variants.

Approved for Public Release; Distribution Unlimited
32

By using MDA tools to capture the compositional and deployment variability in PLAs, we
showed that much of the deployment, configuration, and testing of PLAs can be automated. This
automation frees developers to focus on implementing reusable components and deployment and
configuration scripts for known working units of functionality. Our experiments have shown that
FireAnt can significantly reduce both the initial cost, A, of developing a PLA and the testing cost
T1 of each variant. FireAnt accomplishes this cost reduction by automating tedious and error-
prone manual tasks, such as solution space exploration.

The following are our lessons learned from developing FireAnt and applying it to the EJB-based
Constraints Optimization System (CONST) that schedules pickup requests to vehicles:

 There is a larger up-front cost to adopt an automated test platform. Initially, the cost of
developing models for the MDA testing process increases development cost. Over time,
however, this startup cost is amortized across variants of the SPL saving time and money.

 Choosing the right statistical analysis technique for test results is an important concern.
This report introduces a few statistical analyses that can be used to populate quality attribute
values from test results. There is a wide array of other types of analyses that can be used as
well.

 There may be unanticipated problems caused by the composition of two or more
features that may not be scriptable by FireAnt. For example, complex changes in source
code may be needed. More work is needed to identify how to automate the generation of the
deployment and configuration glue of PLA variants.

 Deployment variations greatly expand the solution space since each variant must be tested
with each deployment variation. It is thus important to only model realistic deployment
scenarios to restrict this space.

In future work, we are pursuing the use of FireAnt to create self-tuning installations. Many high-
performance parallel computing applications, such as the Automatically Tuned Linear Algebra
Software (ATLAS), run performance tests in multiple configurations as part of the installation
process. These applications can then interpret the performance results to optimize themselves for
the given hardware.

We also plan to expand on the ATLAS approach by allowing FireAnt users to define a fitness
function based on the performance metrics collected from the individual component tests. The
FireAnt test automation framework will then be used to iteratively deploy variants in various
configurations in an attempt to maximize this fitness function.

Developers only need to create the tests to collect the appropriate data, such as service rate, and
then provide the logic to perform analyses on the results, such as throughput analysis using
queuing networks, to score the configurations. FireAnt will use this cost function to
automatically deploy, configure, test, and score each candidate variant in each valid component
to hardware configuration. After all testing completes, FireAnt will collect the results and install
the variant/component to hardware configuration with the highest score.

Approved for Public Release; Distribution Unlimited
33

6. Minimizing Number of Processors using BLITZ

This section focuses on an important topic for resource-constrained DoD-centric systems for
which it is important to minimize the number of resources used to deploy DoD systems.

6.1 Introduction

Software engineers who develop distributed real-time and embedded (DRE) systems must
carefully map software components to hardware. These software components must adhere to
complex constraints, such as real-time scheduling deadlines and memory limitations that are hard
to manage when planning deployments that map the software components to hardware [30]. How
software engineers choose to map software to hardware has a direct impact on the number of
processors required to implement a system.

Ideally, software components for DRE systems should be deployed on as few processors as
possible. Each additional processor used by a deployment adds size, weight, power consumption,
and cost to the system [31]. For example, it has been estimated that each additional pound of
computing infrastructure on a commercial aircraft results in a yearly loss of $100 per aircraft in
fuel costs. Likewise, each pound of processor(s) requires four additional pounds of cooling,
power supply, and other support hardware. Naturally, reducing fuel consumption also reduces
emissions, benefiting the environment [32].

Several types of constraints must be considered when determining a valid deployment plan,
which allocates software components to processors. First, software components deployed on
each processor must not require more resources, such as memory, than the processor provides.
Second, some components may have co-location constraints, requiring that one component be
placed on the same processor as another component. Moreover, all components on a processor
must be schedulable to assure they meet critical deadlines [33].

Existing automated deployment techniques [34–36] leveraged by software engineers do not
handle all these constraints simultaneously. For example, Rate Monotonic First-Fit Scheduling
[35] can guarantee real-time scheduling constraints, but does not guarantee memory constraints
or allow for forced co-location of components. Co-location of components is a critical
requirement in many DRE systems. Moreover, if deploying a set of components on a processor
results in CPU over-utilization, critical tasks performed by a software component may not
complete by their deadline, which may be catastrophic. DRE software engineers must therefore
identify deployments that meet these myriad constraints and minimize the total number of pro-
cessors [37].

This section provides three contributions to the study of software component deployment
optimizations for DRE systems that address the challenges outlined above. First, we present the
Bin packing LocatIon Technique for processor minimiZation (BLITZ), which uses bin packing to
allocate software applications to a minimal number of processors and ensure that real-time
scheduling, resource, and co-location constraints are simultaneously met. Second, we present a
case study that motivates the minimization of processors in a production avionics DRE system.
Third, we present empirical comparisons of minimizing processors for deployments with BLITZ

Approved for Public Release; Distribution Unlimited
34

for three different scheduling heuristics versus the simple bin-packing of one component per
processor used in the avionics case study.

6.2 Challenges of Component Deployment Minimization

This section summarizes the challenges of determining a software component deployment that
minimizes the number of processors in a DRE system.

 Rate-monotonic scheduling constraints. To create a valid deployment, the mapping of
software components to processors must guarantee that none of the software components’
tasks misses its deadline. Even if rate monotonic scheduling is used, a series of components
that collectively utilizes less than 100% of a processor may not be schedulable. It has been
shown that determining a deployment of multiple software components to multiple
processors that will always meet real-time scheduling constraints is NP-Hard [36].

 Task co-location constraints. In some cases, software components must be co-located on
the same processor. For example, variable latency of communication between two
components on separate processors may prevent real-time constraints from being honored.
As a result, some components my require co-location on the same processor, which precludes
the use of bin-packing algorithms that treat each software component to deploy as a separate
entity.

 Resource constraints. To create a validate deployment, each processor must provide the
resources (such as memory) necessary for the set of software components it supports to
function. Developers must ensure that components deployed to a processor do not consume
more resources than are present. If each processor does not provide a sufficient amount of
these resources to support all tasks on the processor, a task will not be able to completely
execute, resulting in a failure.

6.3 Deployment Optimization with BLITZ

The Binpacking LocatIon Technique for processor minimiZation (BLITZ) is a first-fit decreasing
bin packing algorithm we developed to (1) assign processor utilization values that ensure
schedulability is not exceeded and (2) enhance existing techniques by ensuring that multiple re-
source and co-location constraints are simultaneously honored.

6.3.1 BLITZ Binpacking

The goal of a bin packer is to place a set of items into a minimal set of bins. Each item takes up a
certain amount of space and each bin has a limited amount of space available for packing. An
item can be placed in a bin as long as its placement does not exceed the remaining space in the
bin. Multi-dimensional bin packing extends the algorithm by adding extra dimensions to bins and
items (e.g., length, width, and height) to account for additional requirements of items. For
example, an item may have height corresponding to its CPU utilization and width corresponding
to consumed memory.

BLITZ uses an enhanced multi-dimensional bin packing algorithm to generate valid deployments
that honor multiple resource constraints and co-location constraints as well as the standard real-

Approved for Public Release; Distribution Unlimited
35

time scheduling constraints. In BLITZ, each processor is modeled as a bin and each independent
component or co-located group of components is modeled as an item. Each bin has a dimension
corresponding to the available CPU utilization. Each item has a dimension that represents the
CPU utilization it requires, as well as a dimension corresponding to each resource, such as
memory, that it consumes. Each bin’s size dimension corresponding to available CPU utilization
is initialized 100%. The resource dimensions are set to the amount of each resource that the
processor offers.

To pack the items, they are first sorted in decreasing order of utilization. Next, BLITZ attempts
to place the first item in the first bin. If the placement of the item does not exceed the size of the
bin (available resources and utilization) of the bin (processor), the item is placed in the bin. The
dimensions of the items are then subtracted from the dimensions of the bin to reflect the addition
of the item. If the item does not fit, BLITZ attempts to insert the item into the next bin. This step
is repeated until all items are packed into bins or no bin exists that can contain the item.

Burchard et al. [36] describe several techniques that use component partitioning and bin-packing
to reduce total required processors. This work, however, does not account for additional resource
constraints, such as memory. Furthermore, these techniques do not allow for collocation
constraints that require specific components to reside on the same processor.

6.3.2 Utilization Bounds

Conventional bin-packing algorithms assume that each bin has a static series of dimensions
corresponding to available resources. For example, the amount of RAM provided by the
processor is constant. Applying conventional bin-packing algorithms to software component
deployment is challenge since it is hard to set a static bin dimension that guarantees the
components are schedulable. Scheduling can only be modeled with a constant bin dimension of
utilization if a worst-case scheduling of the system is assumed. Liu and Layland [38] have shown
that a fixed bin dimension of 69.4% will guarantee schedulability, but in many cases tasks can
have a higher utilization and still be schedulable.

The Liu-Layland equation states that the maximum processor utilization that guarantees
schedulability is equal to 2

1/x

−1, where x is the total number of components allocated to the
processor. With BLITZ, each bin has a scheduling dimension that is determined by the Liu-
Layland equation and the number of components currently assigned to the bin. Each item will
represent at least one but possibly multiple co-located components. Each time an item is assigned
to a bin, BLITZ uses the Liu-Layland formula to dynamically resize the bin’s scheduling
dimension according to the number of components held by the items in the bin.

If the frequency of execution, or periodicity, of the components’ execution requirements is
known, higher processor utilization above the Liu-Layland bound is also possible. Components
with harmonic periods (e.g., periods that can be repeatedly doubled or halved to equal each
other) can be allocated to the same processor with schedulability ensured, as long as the total
utilization is less than or equal to 100%.

Unlike other deployment algorithms [36], [39], BLITZ uses multi-stage packing to exploit
harmonic periods. In the first stage, components with harmonic periods are grouped together. In

Approved for Public Release; Distribution Unlimited
36

each successive stage, the components from the group with the largest aggregate processor
utilization are deployed to the processors using a first-fit packing scheme. If not all periods of the
components in a bin are harmonic, an item is allocated to a bin only if the utilization of its com-
ponents fits within the dynamic scheduling Liu-Layland dimension and all other resource
dimensions. If all component periods within a bin are harmonic, the utilization dimension is not
dynamically calculated with Liu-Layland and a fixed value of 100% is used.

To allow for component co-location constraints, BLITZ groups components that require co-
location into a single item. Each item has utilization and resource consumption equal to that of
the component(s) it represents. Each item remembers the components associated with it. The
Liu-Layland and harmonic calculations are performed on the individual components associated
with the items in a bin and not each item as a whole.

6.4 Empirical Results

This section presents the results of applying BLITZ to an avionics case study provided by
Lockheed Martin Aeronautics through the SPRUCE portal, which provides a web-accessible tool
that pairs academic researchers with industry challenge problems complete with representative
project data. This case study comprised 14 processors, 89 total components, and 14 co-location
constraints. We compared 2 different bin-packing strategies against both BLITZ and the baseline
deployment of this avionics system, produced by the original avionics domain experts.

6.4.1 Experimental Platform

All algorithms were implemented in Java and all experiments were conducted on an Apple
MacbookPro with a 2.4 GHz Intel Core 2 Duo processor, 2 gigabytes of RAM, running OS X
version 10.5.5, and a 1.6 Java Virtual Machine (JVM) run in client mode. All experiments
required less than 1 second to complete with each algorithm.

6.4.2 Processor Minimization with Various Scheduling Bounds

This experiment compared the following bin-packing strategies against BLITZ and the baseline
deployment of the avionics system: (1) a worst-case multi-dimensional bin-packing algorithm
that uses 69.4% as the utilization bound for each bin, (2) a dynamic multi-dimensional bin-
packing algorithm that uses the Liu-Layland equation to recalculate the utilization bound for
each bin as components are added, and (3) our BLITZ technique that combines dynamic
utilization bound recalculation with the harmonic period multi-stage packing. We used each
technique to generate a deployment plan for the avionics system described in Section 6.2.

Figure 14 shows the original avionics system deployment, as well as deployment plans generated
by the worst-case bin-packing algorithm, dynamic bin-packing algorithm, and BLITZ. The
BLITZ technique required 6 fewer processors than the original deployment plan, 3 fewer
processors than the worst-case bin-packing algorithm, and 1 fewer processor than the dynamic
bin-packing algorithm.

Approved for Public Release; Distribution Unlimited
37

Figure 14: Deployment Plan Comparison

Figure 15 shows the total reduction of processors from the original deployment plan for each
algorithm. The deployment plan generated by the worst-case bin-packing algorithm reduces the
required number of processors by 3 or 21%. The dynamic bin-packing algorithm yields a
deployment plan that reduces the number of required processors by 5, or 36%. BLITZ reduces
the number of required processors even further, generating a deployment plan that requires 6
fewer processors, a 43% reduction.

Figure 15: Scheduling Bound versus Number of Processors Reduced

6.5 Concluding Remarks

Determining component deployments that minimize the number of required processors is hard.
This problem is exacerbated by proving that software applications are schedulable for a chosen
deployment. Using bin packing algorithms, such as first-fit decreasing, the entire deployment
space need not be searched. By using our BLITZ algorithm (which combines first-fit decreasing
bin packing with proven utilization bounds based on data characteristics), valid and near minimal
deployments can be determined. Based on our work with BLITZ thus far, we learned the
following lessons pertaining to deployment for DRE systems:

Approved for Public Release; Distribution Unlimited
38

 Grouping based on harmonic periods improves packing tightness. BLITZ combines the
Liu-Layland equation with the increased utilization bound of components with harmonic
execution periods to maximize the utilization of each processor during deployment. As a
result, tasks can be clustered on fewer processors, reducing the processors required.

 Processor minimization depends on real-time benchmarks. BLITZ has been shown to
greatly reduce the number of required processors in a DRE system of an extensively
benchmarked real-time system. Without knowledge of periodicity, resource constraints, and
co-location constraints, BLITZ cannot be fully utilized. It is essential to develop tools that
effectively simulate and thoroughly benchmark DRE systems before they are deployed so
that the full capabilities of BLITZ can be applied.

The current version of BLITZ with example code is available in open-source form at ascent-
design-studio.googlecode.com. The industry challenge problem that is the basis for
this report can be found at www.sprucecommunity.org.

Approved for Public Release; Distribution Unlimited
39

7. Minimizing Network Bandwidth Usage with NOMAD

This section describes work that extends our approach to deployment optimizations by focusing
on minimizing the use of network resources.

7.1 Introduction

Distributed Real-time Embedded (DRE) system designers create system deployments by
mapping multiple software components to hardware. These deployments must satisfy multiple
requirements, such as real-time constraints, resource constraints, collocation constraints,
schedulability constraints, and budgetary constraints. Due to quantity of these constraints,
creating a mapping of software components to hardware, known as a deployment plan, is
extremely difficult.

Multiple DRE system deployments may exist that satisfy these constraints but vary in
performance provided and resources required. Therefore, designers must also strive to determine
a deployment that maximizes system performance while minimizing other system attributes,
such as network bandwidth usage, power consumption, computational resource requirements
such as memory, and/or financial cost. For example, a system that has a minimal financial cost
and provides identical or marginally decreased performance in comparison to another extremely
expensive system could be considered vastly superior.

DRE systems are subject to several constraints. Real-time constraints require that software
execution complete within a set amount of time without exceeding predefined deadlines. For
software to execute in a predictable manner, a scheduling of when each software task will utilize
the processor must be determined. The ability to create this schedule for a set of software tasks is
called schedulability and must be guaranteed for a deployment to be valid.

Collocation constraints may exist between multiple software components that require or prohibit
their placement on a common processor. For example, fault tolerance concerns may require that
two software tasks that provide the same functionality are not allocated to the same processor.
Budgetary constraints define the total financial cost of constructing a deployment that cannot be
exceeded. Therefore, the combined purchased cost of all hardware and other infrastructure, such
as power, must not exceed the project budget.

Many DRE systems are mobile or deployed to remote environments without access to
centralized resources, such as a power grid. Therefore, it is critical that resource consumption,
such as power consumption, is minimized. For example, an Unmanned Aerial Vehicle (UAV)
may fly hundreds of miles without having access to a centralized power source. To circumvent
this limitation, UAVs draw power from on-board batteries that are capable of supplying a finite
amount of power.

While adding batteries to a deployment increases the power availability, it also increases the
weight and cost of the deployment, resulting in slower, more expensive UAVs that could
potentially not fly as far, carry as much equipment, or loiter as long as the original deployment
without additional batteries. Therefore, it is critical to investigate deployments that reduce the
resource requirements of a system while maintaining system performance.

Approved for Public Release; Distribution Unlimited
40

Design teams typically construct DRE system deployments in a distributed manner. For example,
a few members of the design team may focus on satisfying schedulability constraints, while
another group examines satisfying resource constraints. This allows members with heightened
expertise in a specific technical area to focus on a subset of the problem without being hindered
by being forced to examine other areas.

Due to decentralized design, it is not always clear what repercussions the design decisions of one
group will have on another. Exacerbating this problem, the design groups may use different
constraint specific models, such as Ptolemy, RT-Maude, Excel, or UML, to model design
constraints and determine potential deployments. Once each group has determined a solution,
considerable time and effort must be spent combining the solutions into a single representation
and verifying that the deployment as a whole meets all constraints.

When constructing a DRE system deployment, system designers must determine how to assign
the software required by the system to the hardware of the system for execution. The total
software of the system can be split into individual units of software, called software tasks, which
provide additional functionality to the final system. These software tasks require a discrete
amount of computational resources, such as memory, processor utilization, and network
bandwidth. The amounts of these resources required vary between each task. For the software
tasks to execute, they must be allocated to a processor that possesses the necessary amount of
resources.

Each additional processor used in the deployment increases the cost and power consumption of
the system. Therefore, it is essential to minimize the number of processors required by the
deployment. Fortunately, multiple software tasks can be assigned to a processor. Since the
resource usage, real-time requirements, schedulability, and collocation constraints of each task
differ, they cannot be arbitrarily assigned to processors. Optimally, the software tasks should be
allocated in such a way that all design constraints are met while also minimizing the number of
processors required and reducing system cost.

To do this we created BLITZ explained in Section 6 to minimize the number of processors
required by a DRE system deployment. This technique, however, treats software tasks as stand-
alone entities that cannot interact with one another unless collocated on a common processor.
Due to the availability of a network between processors, software tasks are capable of
communicating with one another regardless of their allocation. Certain software tasks must be
able to transmit to other software tasks for either of them to function.

However, the use of a network for transmitting information between software tasks has several
drawbacks. First, the latency of transmissions between processors differs based on the amount of
traffic in the link that connects them and the topography of the network, which can make
schedulability and real-time constraints more difficult to articulate and satisfy. Second, each
communication between software tasks on separate processors requires additional power to
transmit and receive data. Finally, software tasks that share the same processor can completely
bypass the network to communicate, resulting in faster, more reliable communication that
requires considerably less power by minimizing network bandwidth consumption.

Approved for Public Release; Distribution Unlimited
41

Solution Approach→Collocation of Network Intensive Software Tasks: Here we present a
methodology for intelligently allocating software tasks to processors in such a way that ensures
all design constraints are met while reducing total network bandwidth consumption. Placing
software tasks that require large amounts of bandwidth to communicate on a common processor
reduces the need for network transmissions. The software tasks can use the hardware on the
processor to communicate without utilizing the network, resulting in decreased network
bandwidth and power consumption.

This section also provides four contributions to the area of DRE system deployment. First, we
present the NetwOrk MinimizAtion Depolyment (NOMAD) technique for determining system
deployments that satisfy DRE system constraints while minimizing network bandwidth
consumption. Second, we present a case study of the application of NOMAD to minimize the
network bandwidth of a DRE aeronautics system. Third, we present the New Associative Object
Model of Integration (NAOMI), a multi-model manager tool for handling different design
constraint representations. Last, we compare our empirical results with an existing aeronautics
system to demonstrate the potential reduction of network bandwidth consumption.

7.2 Challenges in Deployment Network Bandwidth Minimization

Constructing a system deployment plan consists of assigning software tasks to processors for
execution. Several constraints, such as real-time constraints, fault tolerance constraints,
budgetary constraints, resource constraints, and collocation constraints must be satisfied. If one
or more of these constraints are violated, the system deployment will exhibit unpredictable
behavior potentially causing catastrophic system failures.

Several valid deployments may exist that satisfy all required constraints. These deployments,
however, require different amounts of power and hardware to function and carry different
financial costs. Since resource availability and project budgets are normally limited, a
deployment that requires less power, hardware, or money to deploy is certainly favorable to a
more expensive deployment that requires additional resources. Therefore, it is essential to
determine a deployment that not only satisfies all constraints, but also minimizes resource
requirements and deployment cost.

7.2.1 Challenge 1: Tolerating Processor Failure

DRE systems must remain functional in the inevitable event of system failures. These failures
could be the result of poorly constructed hardware, harsh environmental conditions, or even as a
result of enemy attacks. The amount of failures that a system must be able to sustain is unique to
the domain and application of the deployment. The primary method for increasing the fault
tolerance capabilities of a system deployment is to create replicas.

A replica is an additional node that is deployed with the same software tasks as an existing node.
In the event that the original node fails for any reason, the replica can continue to provide the
functionality that the failed node provided. Replicating existing software allocations onto
additional processors increases the fault tolerance of a system deployment. However, there are
several disadvantages to deploying a large quantity of replicas. Each replica requires the

Approved for Public Release; Distribution Unlimited
42

purchase of additional hardware, resulting in increased system cost, power consumption, weight,
and heat generation.

7.2.2 Challenge 2: Collocating Software Tasks

Real-time constraints may require that two or more software tasks be allocated to the same
processor. For example, two software tasks may require the transmission of large amounts of
data between each other. If the software tasks are allocated to separate processors, then data must
be transmitted over the network. As a result of network latency, the software tasks would take
additional time to function. This could lead to missed deadlines and the violation of real-time
constraints. Further, if two software tasks require each other to function and are placed on
separate processors, then the failure of either processor would prevent both software tasks from
executing to completion.

The collocation of these two tasks on the same processor allows them to communicate with each
other without utilizing the network, resulting in reduced communication latency. Also, the
collocation of two software tasks that depend on each other to function reduces the number of
processor failures that would disallow the execution of the tasks.

7.2.3 Challenge 3: Minimizing Resource Requirements

DRE systems require various amounts of multiple resources, such as memory and power, to
function. As the computational requirements of the software tasks included in the deployment
increase, additional resources must be purchased and included in the system deployment.
Further, additional power must be supplied to meet power consumption requirements as the
number of processors in the deployment increases. However, it is not always simple or even
possible to increase the power production of a DRE system.

For example, Unmanned Aerial Vehicles (UAVs) must meet stringent weight requirements. As
the weight of the UAV increases, the distance that the aircraft can fly, the amount of time it can
loiter, and the size of the payload that it can deliver to a target decreases, reducing its
effectiveness. Since UAVs are mobile crafts, batteries must be utilized to produce the necessary
power. These batteries, however, are extremely heavy and expensive. Therefore, reducing the
power requirements of the system can reduce the size and number of batteries need on the
aircraft, resulting in a cheaper, more effective UAV.

7.2.4 Challenge 4: Meeting Budgetary Constraints

Traditionally, hardware components, such as processors, and software applications must be
purchased before they can be included in a system deployment. As deployments increase in size,
the computational resource requirements increase, requiring the purchase of additional hardware.
As a result of these purchases, the financial cost of the system deployment increases.

Most projects, however, have a finite project budget for constructing and deploying the system.
The total cost of the system must not exceed the project budget. Further, it is extremely desirable
that the financial cost of the system be minimized so that excess funds can be saved for future
endeavors.

Approved for Public Release; Distribution Unlimited
43

Several factors directly impact the financial cost of a system deployment. First, creating
additional replicas to provide increased fault tolerance requires the purchasing of additional
hardware. Second, each additional processor increases resource requirements of the deployment.
Additional resources, such as batteries to provide power, must be purchased and added to the
system deployment. Finally, each additional processor increases the heat generation of the
system, requiring that additional heat sinks and cooling mechanisms be purchased and included
in the deployment.

7.2.5 Challenge 5: Ensuring Schedulability of Software Tasks

Assigning multiple software tasks to a processor rather than allocating a single processor for
each software task greatly reduces the number of processors required, resulting in reduced
system cost, size, and network bandwidth consumption. However, the inclusion of multiple
software tasks to a single processor requires that a schedule be created that allows all of the tasks
to execute to completion prior to real-time deadlines. Otherwise, all of the software tasks may
not be given enough time on the processor, resulting in unpredictable system behavior and
potentially system failure. Designers must ensure that at least one valid execution schedule exists
when assigning additional software tasks to a processor. This constraint, known as
schedulability, must be satisfied to guarantee that all software tasks will receive enough time on
the processor to execute to completion before deadlines are reached.

7.2.6 Challenge 6: Reconciling Multiple Constraint Models

The creation of a DRE system deployment requires the formalization of many constraints,
including fault tolerance constraints, collocation constraints, resource constraints, and budgetary
constraints. It is rare, however, that a single person defines these constraints. Normally, a small
group of people tackles only a single facet of the system design and deployment. One person
may focus on the fault tolerance requirements of the system while another examines resource
requirements. These two people may utilize entirely different methodologies and represent their
results in models of different types.

For example, one group may use a Ptolemy model for analyzing fault tolerance requirements
while another person may use an Excel model for defining the budgetary restrictions of the
system. The final system deployment, however, must take into account all off the constraints
regardless of their representation. Therefore, techniques must be constructed that allow seamless
data exchange between models of different types so that a system deployment can be constructed
that meets all design constraints.

7.3 Network Bandwidth Minimization with NOMAD

The NetwOrk MinimzAtion Deployment (NOMAD) technique uses a hybrid evolutionary-
heuristic algorithm that utilizes Particle Swarm Optimization (PSO) [40] and bin packing
techniques to determine deployments that strive to minimize the network bandwidth
consumption of a deployment while also honoring the constraints described in Section 7.2. This
technique, however, requires that all design constraints, available hardware components,
software tasks, and metadata describing the execution of the software tasks be available in a
common format for input into the technique.

Approved for Public Release; Distribution Unlimited
44

This poses a formidable obstacle since many distributed, disparate groups define these
constraints with minimal communication between one another. As a result, the design constraints
are often represented in different complex models. Therefore, it is difficult to extract the
necessary data from these models to serve as input to NOMAD. Multi-modeling tools exist,
however, such as NAOMI M3, for managing multiple model representations of data. NAOMI is
utilized to facilitate data sharing and aggregation between models of different types so that
dissimilarly represented constraint data can be supplied to the NOMAD algorithm. Once the
design data has been collected using NAOMI, NOMAD can execute to determine a deployment
that minimizes network bandwidth consumption.

NOMAD is a hybrid algorithm utilizing bin-packing and PSO techniques. First, the scheduling
data of the software tasks is analyzed. This data includes the periodicity of each task and the
processor utilization requirement of each task. The periodicity of a task is the set of intervals that
defines when a software task must utilize the processor. The processor utilization defines what
percentage of the processor must be available to the task during the interval for the task to
complete before its deadline arrives.

Techniques have been studied that can ensure that a schedule exists for a set of tasks based on
the periodicity data and processor utilization. For example, if the software tasks exhibit harmonic
periodicity, a set of tasks can be considered schedulable if the combined processor utilization is
less than 100% for any interval. The Liu-Layland bound [38], as discussed in the previous
section, is an equation that uses the number of software tasks allocated to a processor to set a
bound that guarantees schedulability. Finally, regardless of the number of software tasks
allocated to a processor schedulability can be guaranteed if the combined utilization of the tasks
does not exceed 69.4%, as proven by Liu-Layland.

First Fit Decreasing (FFD) bin-packing can be used to determine deployments that minimize
network bandwidth consumption while also meeting all design constraints. The software tasks
are sorted in decreasing order by the network bandwidth requirements between individual
software tasks. Software components that require collocation are combined and treated as a
single task. We attempt to place the first software task pair onto the first processor, represented
as a bin. If the combined processor utilization is less than the appropriate scheduling bound, then
the two tasks will satisfy real-time and schedulability constraints. If enough computational
resources are available on the processor, then the software tasks are deployed to the processor. If
they cannot fit then the two tasks will not be able to be collocated and the next task set is
attempted for placement.

There is an exponential number of potential deployment plans that could be selected. Due to the
NP-hard nature of this problem, it would take a prohibitive amount of time to examine all of the
potential software task allocations. While FFD bin-packing usually delivers quality solutions,
other solutions may exist that cannot be found by simply sorting the tasks in order of processor
utilization. To discover these solutions, we use PSO to determine an initial packing of a small
subset of the software tasks. Once several of the software tasks are allocated, FFD bin-packing is
commenced to allocate the remaining software tasks to the processors. This allows for the
discovery of solutions that would not be found by using FFD bin-packing alone.

Approved for Public Release; Distribution Unlimited
45

7.4 Concluding Remarks

DRE system deployment requires that myriad design constraints be satisfied. This characteristic
combined with the exponential number of potential system deployments makes determining
deployments with minimal network minimization difficult. This difficulty is further compounded
by the distributed nature of DRE system design across many small teams that utilize different
modeling methodologies to represent design constraints. Multi-modeling mangers, such as
NAOMI, can be used to mitigate the difficulties of using multiple model representations of
constraints across a single project. Without tools such as NAOMI, the time and effort required
aggregating and supplying design constraints for use with cutting-edge deployment techniques
would be vastly increased, potentially to the point of becoming prohibitive.

NOMAD can be used to determine deployments that have drastically reduced network
bandwidth. By using hybrid evolutionary-heuristic algorithms with PSO and FFD bin-packing,
new valid deployments can be determined in a matter of minutes, despite the staggering size of
the exponential deployment state space. As a result of network bandwidth minimization, power
consumption is reduced and execution time is expedited, resulting in more effective DRE system
deployments.

Approved for Public Release; Distribution Unlimited
46

8. ScatterD: Multi-objective Deployment Optimization

This section describes our effort on the deployment and configuration of distributed real-time
and embedded (DRE) systems focusing on multi-objective deployment optimizations, i.e., when
considering more than one parameter as a constraint in contrast to only one as described in
Sections 6 and 7.

8.1 Introduction

Current trends and challenges. Several trends are shaping the development of embedded
avionics systems. First, there is a migration away from older federated computing architectures
where each subsystem occupied a physically separate hardware component to integrated
computing architectures where multiple software applications implementing different
capabilities share a common set of computing platforms. Second, publish/subscribe (pub/sub)
based messaging systems are increasingly replacing the use of hard-coded cyclic executions.

These trends are yielding a number of benefits. For example, integrated computing architectures
create an opportunity for system-wide optimization of deployment topologies, which map
software components and their associated tasks to hardware processors. Optimized deployment
topologies can pack more software components onto the hardware, thereby optimizing system
processor, memory, and I/O utilization [41–43]. Increasing hardware utilization can decrease the
total hardware processors that are needed, lowering both implementation costs and maintenance
complexity. Moreover, reducing the required hardware infrastructure has other positive side
effects, such as reducing weight and power consumption.

Open problems. Developing computer-assisted methods and tools to deploy software to
hardware in embedded systems is hard [30] [44] due to the number and complexity of constraints
that must be addressed. For example, developers must ensure that each software component is
provided with sufficient processing time to meet any real-time scheduling constraints [45].
Likewise, resource constraints (such as total available memory on each processor) must also be
respected when mapping software components to hardware components [45][46]. Moreover,
assigning real-time tasks in multiprocessor and/or single-processor machines is NP-Hard [36],
which means that such a large number of potential deployments exist that it would take years to
investigate all possible solutions.

Current algorithmic deployment techniques are largely based on heuristic bin-packing [34–36],
which represents the software tasks as items that take up a set amount of space and hardware
processors as bins that provide limited space. Bin-packing algorithms try to place all the items
into as few bins as possible without exceeding the space provided by the bin in which they are
placed. These algorithms use a heuristic, such as sorting the items based on sized and placing
them in the first bin they fit in, to reduce the number of solutions that are considered and avoid
exhaustive solution space exploration.

Conventional bin-packing deployment techniques take a one-dimensional view of deployment
problems by just focusing on a single deployment concern at a time. Example concerns include

Approved for Public Release; Distribution Unlimited
47

resource constraints, scheduling constraints, or fault-tolerance constraints. In production avionics
systems, however, deployments must meet combinations of these concerns simultaneously.

Solution approach -> Computer-assisted deployment optimization. This section describes
and validates a method and tool called ScatterD that we developed to perform computer-assisted
deployment optimization for avionics systems. The ScatterD model-driven engineering
deployment tool implements the Scatter Deployment Algorithm [47], which combines heuristic
bin-packing with optimization algorithms, such as genetic algorithms [48] or swarm optimization
techniques [49] that use evolutionary or bird flocking behavior to perform blackbox
optimization. This report shows how avionics system developers have used ScatterD to automate
the reduction of processors and network bandwidth in complex embedded system deployments.

8.2 Modern Flight Embedded Avionics Systems: A Case Study

Over the past 20 years, avionics systems have become increasingly sophisticated. Modern
aircraft now depend heavily on software executing atop a complex embedded network for
higher-level capabilities, such as more sophisticated flight control and advanced mission
computing functions. To accommodate the increased amount of software required, avionics
systems have moved from older federated computing architectures to integrated computing
architectures that combine multiple software applications together on a single computing
platform containing many software components.

The class of avionics system targeted by our work is a networked parallel message-passing
architecture containing many computing nodes. At the individual node level, ARINC 653-
compliant time and space partitioning separates the software applications into sets with
compatible safety and security requirements. Inside a given time partition, the applications run
within a hard real-time deadline scheduler that executes the applications at a variety of harmonic
periods.

Integrated computing architectures have many benefits and challenges. Key benefits include
better optimization of hardware resources and increased flexibility, which result in a smaller
hardware footprint, lower energy use, decreased weight, and enhanced ability to add new
software to the aircraft without updating the hardware. The key challenge, however, is increased
system integration complexity. In particular, while the homogeneity of processors gives system
designers a great deal of freedom allocating software applications to computing nodes,
optimizing this allocation involves simultaneously balancing multiple competing resource
demands.

For example, even if the processor demands of a pair of applications would allow them to share a
platform, their respective I/O loads may be such that worst-case arrival rates would saturate the
network bandwidth flowing into a single node. This problem is complicated for single-core
processors used in current integrated computing architectures. Moreover, this problem is being
exacerbated with the adoption and fielding of multi-core processors, where competition for
shared resources expands to include internal buses, cache memory contents, and memory access
bandwidth.

Approved for Public Release; Distribution Unlimited
48

8.3 Deployment Optimization Challenges

This section describes the challenges facing developers when attempting to create a deployment
topology for an avionics system. The discussion below assumes a networked parallel message-
passing architecture (such as the one described in Section 8.2). The goal is to minimize the
number of required processors and the total network bandwidth resulting from communication
between software tasks.

 Challenge 1: Satisfying rate-monotonic scheduling constraints efficiently. The
deployment topology must ensure that the set of software components allocated to each
processor are schedulable and will not miss real-time deadlines. Finding a deployment
topology for a series of software components that ensures schedulability of all tasks is called
“multiprocessor scheduling” and is NP-Hard [36].

 Challenge 2: Reducing the complexity of memory, cost, and other resource constraints.
Processor execution time is not the only type of resource that must be managed while
searching for a deployment topology. Hardware nodes often have other limited but critical
resources, such as main memory or core cache necessary for the set of software components
they support.

 Challenge 3: Satisfying complex dynamic network resource and topology constraints.
Embedded avionics systems must often ensure that not only processor resource limitations
are adhered to, but network resources (such as bandwidth) are not over consumed. Adding
the consideration of network resources to deployment substantially increases the complexity
of finding a software-to-hardware deployment topology mapping that meets requirements.

8.4 ScatterD: A Deployment Optimization Tool to Minimize Bandwidth and
Processor Resources

Heuristic bin-packing algorithms work well for multiprocessor scheduling and resource
allocation. However, heuristic bin-packing is not effective for optimizing designs for certain
system-wide properties, such as network bandwidth consumption, and hardware/software cost.
Below we explain how ScatterD integrates the ability of heuristic bin-packing algorithms to
generate correct solutions to scheduling and resource constraints with the ability of metaheuristic
algorithms to flexibly minimize network bandwidth and processor utilization and address the
challenges in Section 8.3.

8.4.1 Satisfying real-time scheduling constraints with ScatterD

ScatterD ensures that the numerous deployment constraints (such as the real-time schedulability
constraints described in Challenge 1 from Section 8.3) are satisfied by using heuristic bin-
packing to allocate software tasks to processors. Conventional bin-packing algorithms for
multiprocessor scheduling are designed to take as input a series of items (e.g., tasks or software
components), the set of resources consumed by each item (e.g., processor and memory), and the
set of bins (e.g., processors) and their capacities. The algorithm outputs an assignment of items
to bins (e.g., a mapping of software components to processors).

Approved for Public Release; Distribution Unlimited
49

ScatterD ensures schedulability of the avionics system by using response-time analysis [50]. The
response time resulting from allocating a software task of the avionics system to a processor is
analyzed to determine if a software component can be scheduled on a given processor before
allocating its associated item to a bin. If the response time is fast enough to meet the real-time
deadlines of the software task, the software task can be allocated to the processor.

8.4.2 Satisfying Resource Constraints with ScatterD

To ensure that other resource constraints (such as memory requirements described in Challenge 2
from Section 8.3) of each software task are met, we specify a capacity for each bin that is defined
by the amount of each computational resource provided by the corresponding processor in the
avionics hardware platform. Similarly, the resource demands of each avionics software task
define the resource consumption of each item. Before an item can be placed in a bin, ScatterD
verifies that the total consumption of each resource utilized by the corresponding avionics
software component and software components already placed on the processor does not exceed
the resources provided.

8.4.3 Minimizing Network Bandwidth and Processor Utilization with ScatterD

To address deployment optimization issues (such as those raised in Challenge 3 from Section
8.3), ScatterD uses heuristic bin-packing to ensure that schedulability and resource constraints
are met. If the heuristics are not altered, the bin-packing algorithm will always yield the same
solution for a given set of software tasks and processors. The number of processors utilized and
the network bandwidth requirements will therefore not change from one execution of the bin-
packing algorithm to another. In a vast deployment solution space associated with a large-scale
avionics system, however, there may be many other deployments that substantially reduce the
number of processors and network bandwidth required, while also satisfying all design
constraints.

To search for avionics deployment topologies with minimal processor and bandwidth
requirements—while still ensuring that other design constraints are met—ScatterD uses
metaheuristic algorithms to seed the bin-packing algorithm. In particular, metaheuristic
algorithms are used to search the deployment space and select a subset of the avionics software
tasks that must be packed prior to the rest of the software tasks. By forcing an altered bin-
packing order, new deployments with different bandwidth and processor requirements are
generated.

Since bin-packing is still the driving force behind allocating software tasks, design constraints
have a higher probability of being satisfied. By using metaheuristic algorithms to search the
design space— and then using bin-packing to allocate software tasks to processors—ScatterD
can generate deployments that meet all design constraints while also minimizing network
bandwidth consumption and reducing the number of required processors in the avionics
platform.

Approved for Public Release; Distribution Unlimited
50

8.5 Results Summary

The first experiment examined applying ScatterD to minimize the number of processors in the
legacy avionics system deployment, which originally consisted of software tasks deployed to 14
processors. Applying ScatterD with swarm optimization techniques and genetic algorithms
resulted in increased utilization of the processors, reducing the number of processors needed to
deploy the software to eight in both cases. The remaining six processors could then be removed
from the deployment without affecting system performance, resulting in a 43% reduction.

The ScatterD tool was also applied to minimize the bandwidth consumed due to communication
by software tasks allocated to different processors in the legacy avionics system. Reducing the
bandwidth requirements of the system leads to more efficient, faster communication while also
reducing power consumption.

8.6 Concluding Remarks

Optimizing deployment topologies on a legacy embedded avionics system can yield substantial
benefits, such as reducing hardware costs and power consumption. The following is a summary
of the lessons we learned applying our ScatterD tool for deployment optimization to a legacy
avionics system:

 Multiple constraints make deployment planning hard. Avionics deployments must adhere
to a wide range of strict constraints, such as resource, colocation, scheduling, and network
bandwidth. Deployment optimization tools must account for all these constraints when
determining a new deployment.

 A huge deployment space requires intelligent search techniques. The vast majority of
potential deployments that could be created violate one or more design constraints.
Intelligent and automated techniques, such as hybrid-heuristic bin-packing, should therefore
be applied to discover valid “near-optimal” deployments.

 Substantial processor and network bandwidth reductions are possible. Applying
hybrid-heuristic bin-packing to the avionics system resulted in 42.8% processor reduction
and 24% bandwidth reduction. Our future work is applying hybrid-heuristic binpacking to
other embedded system deployment domains, such as automobiles, multi-core processors,
and tactical smart phone applications.

The ScatterD tool is available in open source form in the Ascent Design Studio (ascent-design-
studio.googlecode.com). A document describing the avionics system case study, as well as
additional information on ScatterD, can be found at the SPRUCE web portal
(www.sprucecommunity.org), which pairs open industry challenge problems with cutting-edge
methods and tools from the research community.

Approved for Public Release; Distribution Unlimited
51

9. SCORCH: Model-driven auto-scaling in Cloud Platforms

This section describes how model-driven technologies can be used to enable auto-scaling in
cloud platforms, which are increasingly becoming attractive environments for operational DoD
systems. It also describes how the model-driven technology developed under this effort,
SCORCH, is used in power management for cloud environments.

9.1 Introduction

Current trends and challenges: By the end of 2011, power consumption of computing data
centers is expected to exceed 10,000,000,000 kilowatt-hours (kWh) and generate over
40,568,000 tons of CO2 emissions [55–58]. Since data centers operate at only 20-30%
utilization, 70-80% of this power consumption is lost due to over-provisioned idle resources
resulting in roughly 29,000,000 tons of unnecessary CO2 emissions. Therefore, applying new
computing paradigms, such as cloud computing with auto-scaling, to increase server utilization
and decrease idle time is paramount to creating greener computing environments with reduced
power consumption and emissions [59–63].

Cloud computing is a computing paradigm that uses virtualized server infrastructure and auto-
scaling to dynamically provision virtual OS instances [51]. Rather than over-provisioning an
application’s infrastructure to meet peak load demands, an application can auto-scale by
dynamically acquiring and releasing virtual machine instances as load fluctuates. Auto-scaling
results in increased server utilization and decreased idle time in comparison to over-provisioned
infrastructures in which superfluous system resources may remain idle, resulting in unnecessary
power consumption and ultimately superfluous CO2 emissions. Further, by allocating virtual
machines to applications on demand, cloud infrastructure users can pay for servers incrementally
rather than investing the large up-front costs to purchase new servers, resulting in reduced up-
front operational costs.

Although cloud computing can help reduce idle resources and negative environmental impact,
running with less instantly available computing capacity can impact quality of service as load
fluctuates. For example, a prime time television commercial advertising a hit new product may
cause a ten-fold increase in traffic to the advertisers’ website for about 15 minutes. Data centers
can use existing idle resources to handle this momentary increase in demand and maintain
quality of service. Without these additional resources, the quality of service of the website would
degrade, resulting in an unacceptable user experience. However, if this commercial only airs
twice a week, then these additional resources sit idle for the rest of the week, consuming
additional power without being utilized.

Devising mechanisms for reducing power consumption and environmental impact through cloud
auto-scaling is difficult. Auto-Scaling must ensure that virtual machines can be provisioned and
booted quickly enough to meet response time requirements as the load changes. If auto-scaling is
too slow to keep up with load fluctuations, applications may experience a period of poor
response time while waiting for additional computational resources to come online. One way to
mitigate this risk is to maintain an auto-scaling queue containing pre-booted and pre-configured
virtual machine instances that can be allocated rapidly, as shown in Figure 16.

Approved for Public Release; Distribution Unlimited
52

When a cloud application requests a new virtual machine configuration from the auto-scaling
infrastructure, the auto-scaling infrastructure first attempts to fulfill the request with a pre-booted
virtual machine in the queue. For example, if a virtual machine with Fedora Core 6, JBoss, and
MySQL is requested, the auto-scaling infrastructure will attempt to find a matching virtual
machine in the queue. If no match is found, a new virtual machine must be booted and
configured to match the allocation request.

Figure 16: auto-scaling in a Cloud Infrastructure

Open problems: A key challenge for developers is determining green settings for the size and
properties of the auto-scaling queue shared by multiple applications that may have different
virtual machine configurations [52]. The chosen configurations must meet the configuration
requirements of multiple applications and reduce power consumption without adversely
impacting quality of service. For example, a web application may request virtual machine
instances configured as database, middle-tier Enterprise Java Beans (EJB), or front-end web
servers. Determining how to capture and reason about the configurations that comprise the auto-
scaling queue is hard due to the large number of configuration options (such as MySQL and SQL
Server databases, Ubuntu Linux and Windows operating systems, and Apache HTTP and
IIS/Asp.Net web hosts) offered by cloud infrastructure providers.

It is even harder to determine the optimal queue size and types of virtual machine configurations
that will ensure that virtual machine allocation requests can be serviced quickly enough to meet a
required auto-scaling response time limit. Cost optimization is challenging because each
configuration placed into the queue can have varying costs based on the hardware resources and
software licenses it uses. Finally, energy consumption minimization is also difficult as each set
of hardware resources also consumes a different amount of power.

Solution approach ⇗ ! Auto-scaling queue configuration derivation based on feature
models. In this research we explored a Model-Driven Engineering (MDE) approach called the
Smart Cloud Optimization for Resource Configuration Handling (SCORCH), which is a
continuation of our earlier effort. SCORCH captures virtual machine configuration options for a
set of cloud applications and derives an optimal set of virtual machine configurations for an auto-
scaling queue. From the perspective of environmental and power concerns, SCORCH provides
three contributions to the green computing through MDE based cloud auto-scaling. First, we
describe an MDE technique for transforming feature model representations of cloud virtual
machine configuration options into constraint satisfaction problems (CSPs) [53], [54]. Second,

Approved for Public Release; Distribution Unlimited
53

we describe another MDE technique for analyzing application configuration requirements,
virtual machine power consumption, and operating costs to determine what virtual machine
instance configurations to include in an auto-scaling queue in order to meet an auto-scaling
response time guarantee while minimizing power consumption. Third, we present empirical
results from a case study using Amazon’s EC2 cloud computing infrastructure that shows our
MDE techniques minimize power consumption and operating cost while ensuring that an auto-
scaling response time requirement is met.

9.2 Challenges of Configuring Virtual Machines in Cloud Environments

Reducing unnecessary idle system resources by applying auto-scaling queues can potentially
lead to vast reductions in power consumption and resulting CO2 emissions. However, quality of
service demands, various configuration requirements and other challenges make achieving a
greener computing environment difficult. This section describes three key challenges of
capturing virtual machine configuration options and using this configuration information to
optimize the setup of an auto-scaling queue to minimize power consumption. Section 9.3 then
presents SCORCH’s MDE approach to resolving these challenges.

9.2.1 Challenge 1: Capturing Virtual Machine Configuration Options and Constraints

Cloud computing can lead to greener computing by reducing power consumption. A cloud
application can request virtual machines with a wide range of configuration options, such as type
of processor, amount of memory, OS, and installed middleware, all of which consume different
amounts of power. For example, the Amazon EC2 cloud infrastructure supports 5 different types
of processors, 6 different memory configuration options, and over 9 different OS types, as well
as multiple versions of each OS type [64]. The power consumptions of these configurations
range from 150 to 610 Watts per hour. These EC2 configuration options cannot be selected
arbitrarily and must adhere to a multitude of configuration rules. For example, a virtual machine
running on Fedora Core 6 OS cannot run MS SQL Server. Tracking these numerous
configuration options and constraints is hard.

9.2.2 Challenge 2: Selecting Virtual Machine Configurations to Guarantee Auto-scaling
Speed Requirements

While reducing idle resources results in less power consumption and greener computing
environments, cloud computing applications must also meet quality of service demands. A key
determinant of auto-scaling performance is the types of virtual machine configurations that are
kept ready to run. If an application requests a virtual machine configuration and an exact match
is available in the auto-scaling queue, the request can be fulfilled nearly instantaneously. If the
queue does not have an exact match, it may have a running virtual machine configuration that
can be modified to meet the requested configuration faster than provisioning and booting a
virtual machine from scratch. For example, a configuration may reside in the queue that has the
correct OS but needs to unzip a custom software package, such as a pre-configured Java Tomcat
Web Application Server, from a shared file system onto the virtual machine. Auto-scaling
requests can thus be fulfilled with both exact configuration matches and subset configurations
that can be modified faster than provisioning a virtual machine from scratch.

Approved for Public Release; Distribution Unlimited
54

Determining what types of configurations to keep in the auto-scaling queue to ensure that virtual
machine allocation requests are serviced fast enough to meet a hard allocation time constraint is
hard. For one set of applications, the best strategy may be to fill the queue with a common
generic configuration that can be adapted quickly to satisfy requests from each application. For
another set of applications, it may be faster to fill the queue with the virtual machine
configurations that take the longest to provision from scratch. Numerous strategies and
combinations of strategies are possible, making it hard to select configurations to fill the queue
that will meet auto-scaling response time requirements.

9.2.3 Challenge 3: Optimizing Queue Size and Configurations to Minimize Energy
Consumption and Operating Cost

A further challenge for developers is determining how to configure the auto-scaling queue to
minimize the energy consumption and costs required to maintain it. The larger the queue, the
greater is the energy consumption and operating cost. Moreover, each individual configuration
within the queue varies in energy consumption and cost. For example, a “small” Amazon EC2
virtual machine instance running a Linux-based OS consumes 150W and costs $0.085 per hour
while a "Quadruple Extra Large" virtual machine instance with Windows consumes 630W and
costs $2.88 per hour. It is hard for developers to manually navigate the tradeoffs between energy
consumption, operating costs and auto-scaling response time of different queue sizes and sets of
virtual machine configurations. Moreover, there are an exponential number of possible queue
sizes and configuration options that complicates deriving the minimal power
consumption/operating cost queue configuration that will meet auto-scaling speed requirements.

9.3 SCORCH: An MDE Based Optimization Technique for Generating
Cloud Auto-Scaling Queues

This section describes the MDE techniques that SCORCH uses to address the challenges of
optimizing an auto-scaling queue described in Section 9.2. SCORCH resolves these challenges
by using models to capture virtual machine configuration options explicitly, model
transformations to convert these models into constraint satisfaction problems (CSPs), and
constraint solvers to derive the optimal queue size and contained virtual machine configuration
options to minimize cost while meeting auto-scaling response time requirements.

Figure 17: SCORCH Process

Approved for Public Release; Distribution Unlimited
55

The SCORCH MDE process is shown in Figure 17 and is described below:

 Developers use a SCORCH cloud configuration model to construct a catalog of configuration
options that are available to virtual machine instances.

 Each application considered in the auto-scaling queue configuration optimization provides a
configuration demand model that specifies the configuration for each type of virtual machine
instance the application will request during its execution lifecycle.

 Developers provide a configuration adaptation time model that specifies the time required to
add/remove a feature from a configuration.

 Developers provide a cost model that specifies the cost to run a virtual machine configuration
with each feature present in the SCORCH cloud configuration model.

The cloud configuration model, configuration demand models, and load estimation model are
transformed into a CSP and a constraint solver is used to derive the optimal auto-scaling queue
setup.

9.4 Results Applying SCORCH

This section presents a comparison of SCORCH with two other approaches for provisioning
virtual machines to ensure that load fluctuations can be met without degradation of quality of
service. We compare the energy efficiency and cost effectiveness of each of the approaches for
provisioning an infrastructure for supporting a set of e-commerce applications. We selected e-
commerce applications due to the high fluctuations in workload that occur due to the varying
seasonal shopping habits of users. To compare the energy efficiency and cost effectiveness of
these approaches, we chose the pricing model and available virtual machine instance types
associated with Amazon EC2.

We investigated three-tiered e-commerce applications consisting of web front end, middleware,
and database layers. The applications required 10 different distinct virtual machine
configurations. For example, one virtual machine required JBOSS, MySql, and IIS/Asp.Net
while another required Tomcat, HSQL, and Apache HTTP. These applications also utilize a
variety of computing instance types from EC2, such as high memory, high-CPU, and standard
instances.

To model the traffic fluctuations of e-commerce sites accurately we extracted traffic information
from Alexa (www.alexa.com) for newegg.com (newegg.com), which is an extremely
popular online retailer. Traffic data for this retailer showed a spike of three times the normal
traffic during the November-December holiday season. During this period of high load, the site
required 54 virtual machine instances. Using the pricing model provided by Amazon EC2, each
server requires 515W of power and costs $1.44 an hour to support the heightened demand
(aws.amazon.com/economics).

Approved for Public Release; Distribution Unlimited
56

9.4.1 Experiment: Virtual Machine Provisioning Techniques

Static provisioning. The first approach consists of provisioning a computing infrastructure
equipped to handle worst case demand at all times. In our scenario, this technique would require
that all 54 servers were run continuously to ensure that response time is maintained. This
technique is similar to computing environments that do not permit any type of auto-scaling.
Since the infrastructure can always support the worst-case load, we refer to this technique as
static provisioning.

Non-optimized auto-scaling queue. Another approach is to augment the auto-scaling
capabilities of a cloud computing environment with an auto-scaling queue. In this approach,
auto-scaling is used to adapt the number of resources to meet the current load that the application
is experiencing. Since additional resources can be allocated as demand increases, we need not
boot all 54 servers continuously. Instead, an auto-scaling queue with a virtual machine instance
for each of the ten different configurations required by the application must be available to be
allocated on demand. We refer to this technique as non-optimized auto-scaling queue since the
auto-scaling queue is not optimized.

SCORCH. In this approach we use SCORCH to minimize the number of virtual machine
instances required in the auto-scaling queue while ensuring that response time is met. By
optimizing the auto-scaling queue with SCORCH, the size of the queue can be reduced by 80%
to two virtual machine instances.

9.4.2 Power Consumption & Cost Comparison of Techniques

The maximum load for the 6 month period occurred in November and required 54 virtual
machine instances to support the increased demand, decreasing to 26 servers in December and
finally 18 servers for the final four months. The monthly energy consumption and operational
costs of applying each response time minimization technique can be seen in Figure 18(a) and
Figure 18(b), respectively. Since the maximum demand of the e-commerce applications required
54 virtual machine instances to function, the static provisioning technique consumed the most
power and was the most expensive, with 54 virtual machine instances pre-booted at all times.

(a) Monthly Power Consumption (b) Monthly Cost

Figure 18: Monthly Power Consumption and Cost

The non-optimized auto-scaling queue only required ten pre-booted virtual machine instances
and therefore reduced power consumption and cost. Applying SCORCH yielded the most energy
efficient, lowest cost infrastructure by requiring only two virtual machine instances to be placed
in the auto-scaling queue. Figure 19 compares the total power consumption and operating cost of
applying each of the virtual machine provisioning techniques for a six month period. The non-

Approved for Public Release; Distribution Unlimited
57

optimized auto-scaling queue and SCORCH techniques reduced the power requirements and
price of utilizing an auto-scaling queue to maintain response time in comparison to the static
provisioning technique.

(a) Total Power Consumption (b) Total Cost
Figure 19: Savings in Power Consumption and Cost

The figure compares the savings of using a non-optimized auto-scaling queue versus an auto-
scaling queue generated with SCORCH. While both techniques reduced cost by more than 35%,
deriving an auto-scaling queue configuration with SCORCH yielded a 50% reduction of cost
compared to utilizing the static provisioning technique. This result reduced costs by over
$165,000 for supporting the e-commerce applications for 6 months.

More importantly than reducing cost, however, applying SCORCH also estimates reduction in
CO2 emissions by 50% as shown in Figure 20(a). According to recent studies, a power plant
using pulverized coal as its power source emits 1.753 pounds of CO2 per each kilowatt hour of
power produced [57]. Therefore, as shown in Figure 20(b), not using an auto-scaling queue
results in an emission of 208.5 tons of CO2 per year. Applying the SCORCH optimized auto-
scaling queue, however, cuts emissions by 50% resulting in an emission reduction of 104.25 tons
per year.

(a) Power Consumption/Cost Percent Reduction (b) CO2 Emissions

Figure 20: Environmental Impact of SCORCH-based Deployment

9.5 Concluding Remarks

Auto-scaling cloud computing environments help minimize response time during periods of
increased application demand, while reducing cost during periods of light demand. The time to
boot and configure additional virtual machine instances to support applications during periods of
high demand, however, can negatively impact response time. This report describes how the
Smart Cloud Optimization of Resource Configuration Handling (SCORCH) MDE tool uses
feature models to represent the configuration requirements of multiple software applications and

Approved for Public Release; Distribution Unlimited
58

the power consumption/operational costs of utilizing different virtual machine configurations,
transforms these representations into CSP problems and analyzes them to determine a set of
virtual machine instances that maximizes auto-scaling queue hit rate. These virtual machine
instances are then placed in an auto-scaling queue so that response time requirements are met
while minimizing power consumption and operational cost.

The following are lessons learned from using SCORCH to construct auto-scaling queues:

 Auto-scaling queue optimization effects power consumption and operating cost. Using
an optimized auto-scaling queue greatly reduces the total power consumption and operational
cost compared to using a statically provisioned queue or non-optimized auto-scaling queue.
SCORCH reduced power consumption and operating cost by 50% or better.

 Dynamic pricing options should be investigated. Cloud infrastructures may change the
price of procuring virtual machine instances based on current overall cloud demand at a
given moment. Our future work is incorporating a monitoring system to allow SCORCH to
take advantage of such price drops when appropriate.

 Predictive load analysis should be integrated. The workload of a demand model can
drastically effect the resource requirements of an application. In future work, SCORCH will
take into account predictive load analysis to auto-scaling queues that cater to the workload
characteristics of applications.

SCORCH is part of the ASCENT Design Studio and is available in open-source format from
code.google.com/p/ascent-design-studio.

Future Work

For the near term future we are also investigating issues and challenges in mobile cloud
environments. One important topic we are investigating pertains to maximizing the uptime of
mobile devices that provide critical services in a Cloud. We expect to present data in this regard
in our subsequent report.

Approved for Public Release; Distribution Unlimited
59

10. Deployment Optimizations for Mobile DoD Systems

This section describes our effort which continues the theme of auto-scaling issues in cloud
computing, however, with a focus on investigations on battery power concerns for smart phone-
based cloud computing environments. Such research is important for the US Air Force, which is
increasingly adopting the use of new technologies including smart phones for national security.

10.1 Mobile Devices in DoD Systems

Current trends and challenges: The unprecedented growth in smart phone technology is giving
rise to new applications that illustrate non-conventional usage of smart phones [65]. For
example, these applications may include situational awareness in military-centric operations
(e.g., the DARPA Transformative Apps program), emergency services, disaster search-and-
recovery, and intelligent transportation. Consider, for example, the natural disasters of 2010 like
the Haiti earthquake or the massive flooding in the state of Tennessee. In both these situations,
most of the infrastructure, such as the roads and phone services (both landline and cellular), and
utilities, such as gas and electricity, were rendered unavailable. A number of instances of smart
phone usage for survival have come to light in the days following the calamity.

It is conceivable, therefore, to think of forming ad hoc networks of smart phones carried by
search-and-rescue teams as the best means in these circumstances to identify survivors trapped
under the debris or those trapped in their houses due to raging flood waters, and coordinate the
rescue operations. To operationalize smart phone-based search-and-rescue missions, it is
necessary for the collection of smart phones – a smart phone cloud -- involved in the mission to
be able to support a group of real-time services that provide distributed sensing operations, data
correlation capabilities stemming from acquisition of distributed streams of images, audio and
video, and location-based services.

However, since these smart phones have limited battery life and hardware resources, keeping the
collective set of services that make up the mission capabilities up and running for the maximum
amount of time is crucial for maximizing the chances of finding more survivors. Maximizing the
mission lifespan is important because the smart phones operated by first responders are often
deployed in environments where readily replenishing the resources, such as batteries, is
infeasible. Despite these constraints, key quality of service (QoS) requirements of real-time and
reliable dissemination of information to the concerned stakeholders, such as first responders in
search-and-rescue missions, must be met.

The requirements outlined above can be met by effectively deploying the services that make up
the mission on the collection of smart phones involved in the mission. Here ad hoc network can
be formed by smart phones which are self-configuring and self-organizing as no physical
infrastructure is available for forming a centrally administered wireless network. Hence we are
assuming that the appropriate ad hoc routing protocols like AODV [66], DYMO [67], etc. are
available for routing of data to/from ad hoc network. Also, each node in the ad hoc network has
equal probability of acting as hosts as well as routers to route data to/from other nodes in the
network. The reason is that considerable battery power is consumed in routing data to/from the
network to/from the outside network. Thus if a particular node has a higher probability of acting

Approved for Public Release; Distribution Unlimited
60

as a router, then its battery power will be drained faster, which can render the entire distributed
application nonoperational earlier than its maximized service uptime.

Such a deployment problem is hard for two reasons. First, assuring the timely and reliable
dissemination of information in operating environments where availability of resources, such as
networks, is unpredictable requires deploying the individual services on the collection of smart
phones in a way that will ensure the schedulability of the services while efficiently using the
scarce resources. Secondly, the rate of drain of battery charge adds a new dimension of
challenges to an already challenging problem because battery drain is often dictated by the
amount of computation and communication activities.

Solution approach → Service Uptime Maximization in Smart phone Clouds. In this research
we focus on solving the service uptime maximization problem, which is the problem of ensuring
that the operational capability of the mission provided by the collection of services deployed on
the group of smart phones remains up and running for the maximum duration of time. In other
words, it is necessary to minimize the rate at which the smart phone batteries drain themselves.
Since every service (and its software components) of the mission consumes different
computational and communication resources of the smart phone, battery drain is impacted
differently. Hence, the service uptime maximization problem requires solving the deployment
problem that minimizes battery drain (or preserves the battery charge) while also satisfying the
QoS requirements.

To address these challenges, we present a deployment framework called SmartDeploy, which
extends the earlier work on ScatterD [47]. ScatterD combined binpacking heuristics with
evolutionary algorithms [68] to minimize power consumption in nodes. It overcame the
limitations of applying each of these algorithms in isolation. In particular, ScatterD provided a
first-fit heuristic bin packer which places each item into the first available bin in which it will fit.
In the case of maximizing service uptime, the software components of the services must be
deployed in a way that minimizes battery drain on each smart phone. A first-fit heuristic may not
necessarily find the right solution to our problem.

Consequently, SmartDeploy provides a framework that can be strategized with the desired bin
packing heuristic along with a strategizable framework to plug in the desired evolutionary
algorithm so that a variant of the hybrid algorithm can be synthesized. To solve the service
uptime maximization problem, SmartDeploy is strategized with the worst-fit bin packer which
ensures that services are load balanced across the collection of smart phones used in the mission
in a way that minimizes battery drain while also delivering the required QoS. The evolutionary
algorithm generates initial random vectors and evaluates them using a fitness function. In this
research we have limited ourselves to offline deployment of services assuming that the rescue
missions and their parameters are planned a priori. The case of determining an effective
deployment at runtime is orthogonal to the focus of this research and is the focus of future work,
which will require additional runtime protocols involving message exchanges among
participating smart phones. We believe that the polynomial runtime complexity of SmartDeploy
can make it a promising approach even at runtime.

Approved for Public Release; Distribution Unlimited
61

10.2 Challenges in Maximizing Smart phone Cloud Lifetime

In this section we use an example of a video recognition service for disaster monitoring as a case
study to highlight the challenges in maximizing the service uptime for smart phone-based
distributed, real-time systems. Figure 21 shows an example of a distributed video recognition
service used in disaster monitoring and recovery. The service comprises of different software
components like video capturing (C1), segmentation (C2), feature extraction (C3), tracking (C4),
activity analysis (C5) and information dissemination (C6). Each of these software component has
different hardware resource requirements, such as memory and CPU, and different power
consumption rates. For simplicity, we have shown one such distributed service (video
recognition) consisting of six software components and four smart phones for disaster
monitoring. Out of four smart phones used, two of them are Android-based HTC phones and the
other two are iPhones. Software components C1, C4, and C5 can be executed only on Android-
based smart phones, while software components C2, C3, and C6 can be executed only on
iPhones. In general, a disaster monitoring service can be composed of a combination of services
such as distributed image recognition and distributed location-based services. Such a
comprehensive service can consist of hundreds of software components deployed onto hundreds
of smart phones. The deployment plan, which comprises a mapping of the software components
of the services to the smart phones, should meet both the hardware resources constraints and
power constraints such that the service can last for as much time as possible while also meeting
the real-time application requirements.

Figure 21: Smart phone Cloud Motivating Scenario

Challenge 1: Dealing with complex hardware/software design constraints. In our case study
example of the distributed video recognition service, its software components have different
hardware and software resource requirements. For example, the video capturing component
requires high memory and communicational power as it stores the captured video and sends it to
the phone hosting feature extraction and segmentation components. The feature extraction and
segmentation components require high CPU and computational power as they run complex
algorithms based on extraction and segmentation on the video. The tracking and activity analysis
components are involved in significant communication activities that consume battery power as

Approved for Public Release; Distribution Unlimited
62

they constantly communicate with the phone hosting the information dissemination component.
A disaster monitoring system comprises many distributed applications consisting of hundreds of
smart phones and hundreds of software components hosted on them. How these software
components are deployed on the devices will determine how long the overall mission will last,
because the uptime of the mission depends on how long the batteries last.

In general, network embedded devices like smart phones have limited battery power and limited
hardware resources like CPU and memory. Moreover, the software components deployed on
these devices consume power at different rates, which is governed by the computation and
communication activities induced by the software components. The amount of time a software
component runs is directly proportional to the amount of battery power available to it with
sufficient hardware resources. Thus, the power consumption rate of these software components,
and what devices they get deployed on are the key factors that affects the service uptime. Given
that a mission is realized by distributing its services across a group of smart-phones, keeping the
entire distributed application up for a longer duration is challenging because even if one of the
smart phone’s battery is exhausted, then the software components deployed on it are no longer
available which makes the overall distributed system no longer work.

Thus, a deployment plan should be generated such that each of the software components gets
maximum available power and sufficient hardware resources which will maximize the overall
service uptime of the mission. In generating such a deployment plan, we must consider both the
computational and communication power consumption rates of the software components.

Challenge 2: Dealing with heterogeneity of available resources and execution constraints.
Our case study example illustrates heterogeneity in the smart phone hardware and operating
systems. It is conceivable that embedded devices such as smart phones used in mission-critical
applications such as disaster search and rescue management have different available hardware
resources like CPU type, available memory, and lifetime of battery. Due to this heterogeneity,
certain software can execute on only certain devices. For example, smart phone apps developed
for iPhones cannot execute on Android-based phones. As outlined in Challenge 1, the
deployment topology of these mission-critical systems must address various design constraints
like power capacity, memory, and CPU, which is a hard problem. The problem becomes even
harder with the heterogeneity of the platforms and the software execution constraints. In the case
study example, there are two Android-based HTC phones and the other two are iphones.
Moreover, independent software components for video capturing, tracking and analysis can
execute only on Android-based phones. Similarly, feature extraction, segmentation and
information dissemination can execute only on iPhones. Such constraints affect the deployment
plan which in turn affects maximizing service uptime.

Challenge 3: Dealing with scale of the system. The case study example of distributed video
recognition service is comprised of four devices hosting six software components which means

there exist 6
4

possible deployment plans (if there are no restrictions). Several optimization
techniques are available to solve the deployment challenges explored in Challenges 1 and 2
described above. The solutions can be characterized and solved using constraint satisfaction pro-
gramming (CSPs) [69], integer programming [70] and Bender’s decomposition [71]. Although
our case study represents a very small problem size which can be solved by bin-packing
heuristics, integer programming or evolutionary algorithms, typical mission critical applications

Approved for Public Release; Distribution Unlimited
63

will comprise several hundreds of devices and many more software components. Thus, when the

problem size scales to 300
100

or even more, and moreover, considering additional hardware and
software design constraints, as outlined in Challenges 1 and 2, many of the known techniques
cannot readily scale to hundreds of software components and hundreds of devices. In other
words, the solutions are computationally very expensive to obtain.

Bin packing heuristics have been developed to overcome these challenges to produce valid
deployment plans; however, these plans do not necessarily produce the optimal solutions for
large problem sizes. Evolutionary algorithms are commonly used in deployment optimization
problems. However their performance degrades when the solution space is huge and has tight
constraints that lead to a large number of invalid points in the search space.

10.3 The SmartDeploy Architecture

To address the challenges described in Section 10.2, we use a hybrid algorithm that integrates
bin packing heuristics with evolutionary algorithms (e.g., particle swarm optimization PSO [40]
and genetic algorithms [72]) so that we can reap the benefits of both while overcoming the
limitations of individual techniques. Moreover, rather than fixing a specific heuristic or an
evolutionary algorithm, we provide a framework that enables a deployment planner to strategize
the framework with the desired techniques. The advantage of using bin-packing heuristics is that
they produce a valid deployment topology while the advantage of using evolutionary algorithms
is that they explore multiple solutions in the design space.

Here we show the architecture of SmartDeploy, which is a strategizable framework for deploy-
ment planning that addresses the three challenges described in Section 10.2. The SmartDeploy
framework is applied to solve the Service Uptime Maximization problem. Figure 22 shows the
SmartDeploy framework combining the worst-bin packer and PSO algorithm. It shows a generic
interface to encode objective functions and constraints, and the hybrid algorithm to solve design-
time constraint optimization problems. The algorithm for combining the worst-fit bin packer and
genetic algorithm is also similar. The white colored blocks show the newly added features by
SmartDeploy, blue colored blocks show the integration between original and new features and
the grey colored blocks show the original features of ScatterD.

Approved for Public Release; Distribution Unlimited
64

Figure 22: SmartDeploy Architecture

10.4 Empirical Results using SmartDeploy

We compared the deployments produced by five different deployment techniques. The five
techniques we compared are:

 Worst-fit bin packing -A worst-fit heuristic of bin-packing algorithm.

 Particle Swarm Optimization (PSO) - Only PSO algorithm from SmartDeploy framework.

 SmartDeploy PSO -The PSO variant of SmartDeploy which combines worst-fit bin-packer
with PSO algorithm.

 Genetic - Only Genetic algorithm algorithm from SmartDeploy framework.

 SmartDeploy Genetic -The genetic variant of SmartDeploy which combines worst-fit bin-
packer with genetic algorithm.

The experiments were conducted on a single Windows XP desktop with 2.19 GHz Intel Core 2
Duo processor and 2 GB RAM. Java Virtual Machine (JVM) version 1.6 was used for the
experiments. For both PSO and genetic algorithm, a population size of 20, local learning
coefficient of 0.5, global learning coefficient of 2, and 20 search iterations (generations) were
used. The genetic algorithm allowed a total of 10% of the population to be passed through to the
next generation, selected the top 25% of solutions for mating, and applied a mutation probability
of 5%. A uniform distribution for generating initial random vectors is used to cover more area
and not inadvertently bias our search to a specific region. Experiments 1 and 2 described below
were conducted using 100 nodes and 100 software components. The number of nodes tested for
the experiment ranges from 30 to 100. The number of software components is kept constant.

Approved for Public Release; Distribution Unlimited
65

10.4.1 Experiment 1: Homogeneous nodes, heterogeneous software components

The first experiment was conducted using homogeneous nodes. That is, each node has the same
amount of memory and power capacity. The software components deployed on the nodes were
heterogeneous (each component required a different amount of memory and power consumption
capacity). Here, constraints were placed on the amount of memory available on all nodes and the
amount of memory required by all software components, such that total hardware and software
resource requirements should not exceed total availability.

We hypothesize that SmartDeploy should provide a significant increase in service uptime
compared to the bin-packing algorithm and PSO. Here, although the nodes have homogeneous
properties for the amount of memory and the battery power capacity, the heterogeneous
properties of the software components i.e., each of them requiring different amount of memory
and power consumption capacity causes SmartDeploy to produce better results than the worst-fit
bin packer and evolutionary algorithms alone.

Service uptime is plotted against the number of homogeneous nodes in Figure 23. The
SmartDeploy algorithms provide 94% and 58% improvement in maximizing service uptime over
PSO and genetic algorithms, respectively. However, it gives only 20% improvement over worst-
fit bin packer. Due to the homogeneous properties of the nodes, the worst-first bin packer gives
better results as compared to both of the evolutionary algorithms, and are close to that of
SmartDeploy.

Figure 23: Homogeneous Nodes, Heterogeneous Components

10.4.2 Experiment 2: Heterogeneous nodes (but same OS), heterogeneous software

components

The second experiment was conducted using heterogeneous nodes. That is, half the number of
nodes have one set of properties while the other half has another set of similar properties. For
lack of space we do not report on other variations. The software components deployed on the
heterogeneous nodes were also heterogeneous - each component required a different amount of
memory and power consumption capacity. Constraints were placed on the amount of memory
available on all nodes and the amount of memory required by all the software components, such
that total hardware and software resource requirements would not exceed total availability.

Approved for Public Release; Distribution Unlimited
66

We surmise that SmartDeploy should provide significant improvement in service uptime com-
pared to the bin-packing algorithm and evolutionary algorithms. Nodes having heterogeneous
properties for the amount of memory and battery power capacity, and having heterogeneous
properties for the software components (each component requiring a different amount of memory
and power consumption capacity), should cause the SmartDeploy algorithms to produce better
results than the worst-fit bin packer and evolutionary algorithms alone.

As seen in Figure 24, due to the heterogeneous properties of nodes and software components,
and large problem size, the performance of evolutionary algorithms degrades. PSO gives invalid
topologies in this scenario. Genetic algorithm gives invalid topologies when software
components are tightly packed onto devices. Even when the number of devices increases,
SmartDeploy algorithms provide up to 162% better service uptime. They also provide up to 75%
more service uptime than worst-fit bin packer.

Figure 24: Heterogeneous Nodes, Heterogeneous Components

10.4.3 Experiment 3: Varying the number of software components (heterogeneous) deployed
on fixed number of heterogeneous nodes

The third experiment was conducted by varying the number of heterogeneous software
components being deployed on fixed number of heterogeneous nodes. The number of software
components varied from 100 to 200 with increments of 20. Constraints were placed on the
amount of memory available on all nodes and the amount of memory required by all the software
components, such that the total hardware and software resource requirements do not exceed their
total availability.

Our hypothesis is that as the number of software components increases, the topologies become
tightly constrained. If the solution space increases, then it should cause the bin-packer to provide
a less than optimal value. The tightly constrained solution space should cause evolutionary
algorithms to degrade in their performance. As seen in Figure 25 the devices become tightly
packed with increasing number of software components and constraint on memory requirements.
The evolutionary algorithms degrade in performance and give invalid deployment topologies.
The SmartDeploy algorithms give up to 50% more service uptime as compared to worst-fit bin
packer.

Approved for Public Release; Distribution Unlimited
67

Figure 25: Varying the Number of Heterogeneous Software Components

10.4.4 Experiment 4: Heterogeneous nodes (including different OS) and heterogeneous
software components

The fourth experiment was conducted using heterogeneous nodes, such that 30% of nodes had
one set of properties while 70% of nodes had another set of similar properties. Also, a different
OS (Android-based and iPhone) was used for each set. The software components deployed on
them were also heterogeneous. Each component required different memory, power consumption
capacity, and execution platform (OS). Constraints were placed on the execution platform (OS),
amount of memory available on all nodes, and the amount of memory required by all software
components, such that total hardware and software resource requirements would not exceed total
availability.

Our hypothesis is that SmartDeploy should provide significant improvement in service uptime
compared to the bin-packing algorithm and evolutionary algorithms. Here the nodes having
heterogeneous properties for the amount of memory, the battery power capacity and execution
platform (OS), the heterogeneous properties for the software components, i.e., each of them
requiring different amount of memory and power consumption capacity and execution platform
(OS) should cause the SmartDeploy algorithms to produce better results than the worst-fit bin
packer and evolutionary algorithms alone.

Figure 26 displays service uptime as a function of the number of heterogeneous nodes. The
performance of evolutionary algorithms degrades due to the heterogeneous properties of nodes
and software components, and large problem size. PSO gives invalid topologies in this scenario.
A genetic algorithm gives invalid topologies when software components are tightly packed onto
devices. SmartDeploy algorithms give higher service uptime than bin-packer and the
evolutionary algorithms.

Approved for Public Release; Distribution Unlimited
68

Figure 26: Heterogeneous Nodes (Different OS), Heterogeneous Components

10.4.5 Experiment 5: Comparison of service uptime by all the algorithms with that of brute-

force algorithm

We attempted to obtain the optimum service uptime using a brute-force algorithm which tries
each and every combination of deployment topologies. However, we observed that running the
brute-force algorithm even for even small problem sizes takes significant time. So it was not
practical to run it for large problem sizes of hundreds of nodes and hundreds of software
components. Table 1 shows the running time for the brute-force algorithm over a small problem
size.

10.4.6 Experiment 6: Comparison of computation time taken by each of five algorithms to
execute

The sixth experiment was conducted to observe the average time taken by each of the five
algorithms to execute. Here the experimental values used in Experiment 2 were used regarding
heterogeneous nodes and heterogeneous software components. The average values for service
uptime for the entire range of nodes were recorded. As seen in Figure 27, worst-fit bin packer
takes least amount of time to run (47 milliseconds). The SmartDeploy algorithms take the most
amount of time to run, between 2,000 milliseconds to 3,200 milliseconds. Since we are
considering an offline solution for deployment topology, a delay of a few seconds is tolerable to
achieve better service uptime. Hence the use of SmartDeploy algorithms is desirable in such
situations.

Nodes Software components Service uptime(msec)
5 5 78
5 7 1219(1.2 secs)
5 9 33312(33.3 secs)
5 11 1261211(21 minutes)

Table 1: Time taken to run Brute-force algorithm for service uptime

Approved for Public Release; Distribution Unlimited
69

Figure 27: Time Taken by Each Algorithm to Execute

10.5 Concluding Remarks

Service uptime maximization in distributed applications hosted on a network of smart-phones
can be achieved through effective deployment. Several optimization techniques are commonly
used for deployment problems in distributed real-time and embedded systems. Algorithms with
exponential runtime complexity like integer programming are not scalable when the problem size
increases up to hundreds of devices. Bin-packing heuristics tend to generate valid deployment
topologies, but they may not give optimal solutions when problem size increases. Evolutionary
algorithms are commonly used for deployment problems since they explore a variety of design
solutions. However, as the number of constraints and the problem size increases, they tend to
degrade in performance and returned invalid results.

This section describes a framework called SmartDeploy that provides a hybrid deployment
technique to achieve service uptime maximization. It builds upon the earlier work, called
ScatterD, which combines first-fit bin packer with the evolutionary algorithm to reduce power
consumption in DRE systems. SmartDeploy enables a user to strategize both the evolutionary
algorithm as well as the bin packing heuristic. A concrete manifestation of SmartDeploy using
the worst-case bin packer along with evolutionary algorithms is presented to solve the service
uptime maximization problem for smart phone-based mission critical applications.

Using worst-fit bin packer heuristic, the software components of the distributed application can
be evenly deployed on the available devices such that they can obtain maximum available battery
power and sufficient hardware resources. The experimental results show that SmartDeploy
framework increased service uptime from 20% to 162% beyond that provided by worst-fit bin
packer and evolutionary algorithms when used independently. The following lessons were
learned conducting this research:

Since the running time of the SmartDeploy algorithms is only slightly more than the algorithms
we compared against, it is practical to use the hybrid algorithm. In future work we intend to
investigate the use of the SmartDeploy framework in runtime deployment decisions. We also
intend to investigate other distribution techniques for the generation of initial random topologies
of evolutionary algorithms like Gaussian distribution to see if they can achieve better solutions.

Approved for Public Release; Distribution Unlimited
70

We intended to run the brute-force optimal algorithm to compare the service uptime solutions
from each of the five algorithms we used in our experiments to see how our solutions compare to
the optimal one. However, we observed that running the brute-force algorithm, even for small
problem sizes, takes considerable amount of time. Hence it was not practical to test it out for the
large problem size that we use.

Approved for Public Release; Distribution Unlimited
71

11. Dynamic Resource Management for Cloud Computing-based
DoD Systems

Our effort continued the theme on the auto-scaling issues in cloud computing with a focus on
investigations into balancing the costs of acquiring and releasing machines, and their
reconfigurations. An additional dimension of our research focused on deployment and
configuration of distributed systems, which can also handle deployment in the cloud – which can
be a tactical cloud, used in US Air Force operations.

11.1 Introduction

Large enterprise software systems such as eBay, Priceline, Amazon and Facebook need to
provide high assurance in terms of Quality of Service (QoS) metrics such as response times, high
throughput, and service availability to their users. Without such assurances, service providers of
these applications stand to lose their user base, and hence their revenues. Typically customers
maintain Service Level Agreements (SLAs) with service providers for the QoS properties.
Failure to comply with satisfying these QoS metrics leads to a major loss of revenue in the form
of decreased user base [73]. Similar requirements exist in the context of DoD applications, where
the QoS requirements become even more stringent, and instead of revenues the DoD is
concerned with cost-effective solutions. In the rest of the section we will use enterprise
applications to drive home our point and the defined solutions.

Catering to the SLA while still keeping costs low is challenging for such enterprise systems due
primarily to the varying number of incoming customers to the system. For example, consider
Figure 28 which depicts a real-world scenario wherein workload of the FIFA 1998 soccer world
cup website in the number of incoming clients to such a website is highly varying depending
upon a number of factors such as time of day, day of week and other seasonal factors.

Figure 28: Workload for the 1998 FIFA Soccer World Cup

Such a workload is very typical of all commercial websites, and planning capacity for such
workload is not easy. Capacity could be planned for the average load or for peak load. When

Approved for Public Release; Distribution Unlimited
72

planned for the average load, there is less cost incurred due to less hardware used but
performance will be a problem when peak load occurs. Bad performance will discourage
customers and revenue will be affected. On the other hand if capacity is planned for peak
workload, resources will remain idle most of the time.

Auto-scaling supported in cloud computing environments overcomes these challenges. Cloud
computing providers such as Amazon EC2 provide access to hardware which can be allocated or
deallocated at any time. Images of client software can be created beforehand which can be
loaded onto the machine. When not required, the same machines can be released. Machine usage
costs on an hourly basis. Amazon EC2 provides an API which can be used to automate this
process. A problem with such a resource allocation scheme is the chance of thrashing where due
to frequent variation of workload, machines can be added and released on every sample.

A desirable solution would require an ability to predict the incoming workload on the system and
allocate resources a priori. This capability in turn will enable the application to be ready to
handle the load increase when it actually occurs. A corollary requirement is the need to identify
how many machines should actually be provisioned and started to handle the predicted load. For
example, consider a situation where there is N number of machines already running and handling
M customers for a given application. Suddenly, the number of customers increases to M + 100
and processor utilization also increases in the running nodes. Naturally, this situation requires
increasing the number of machines allocated, but by how much is unknown. Anything less will
provide degraded performance; anything more implies cost incurred by the customer for
resources not actually used by the application.

In summary, auto-scaling the resources in a cloud environment is not an easy and straightforward
task. Overcoming these challenges will require algorithms which take into account the following:
(i) overheads related to state transition when number of resources are changed, (ii) ability to
accurately predict future workload, and (iii) compute the right number of resources required for
the expected increase or decrease in workload. This report describes a resource allocation
algorithm based on model predictive techniques which allocates or deallocates machines to the
application based upon optimizing the utility of the application over a limited prediction horizon.

11.2 Challenges to Elastic Resource Provisioning in Cloud Environments

This section discusses the challenges to realizing elastic resource provisioning in large-scale
component-based systems. Many of the challenges that are faced in elastic resource provisioning
using auto-scaling can be highlighted from the workload pattern in Figure 28. In DoD scenarios,
due to the fluctuating availability of resources, it becomes important to support an elastic
resource provisioning capability so that mission-critical applications can continue to execute in a
cost effective manner.

11.2.1 Challenge 1: Workload Forecasting

The auto-scaling strategy in a cloud environment will involve acquiring and release of resources
as the workload imposed by the application changes with time. Releasing resources is easy,

Approved for Public Release; Distribution Unlimited
73

however, acquiring resources incurs performance overheads due to the following reasons. First,
there is a need to make a call on the cloud API which starts the acquisition process. The
machines will then need to boot up with the specified image, the application(s) needs to be
started, and there also might be the need for state update. Thus, it is desirable if the resources can
be acquired earlier than the time when workload actually increases. This outcome can be
possible only if the future workload can be predicted, possibly using historical data.

11.2.2 Challenge 2: Identify Resource Requirement for Incoming Load

Figure 28 plots the number of customers who use the system every hour. Since the number of
customers varies every hour, the number of resources required also varies. The required number
of resources is a function of the number of customers, the nature of the application, and also the
type of calls that each customer makes on the application. The resources required need to be
estimated properly so that they can be provisioned within the cloud infrastructure. The resource
estimation also needs to be very accurate. If it is not accurate then there is the potential of under-
or over-provisioning of resources, each of which has its pitfalls.

11.2.3 Challenge 3: Resource Allocation while Optimizing Multiple Cost Factors

To optimize resource usage and/or minimize idle resources, an ideal solution is to define a time
interval and change resources as many times as possible as workload changes. In the limit this
interval could be made infinitesimally small and resources are changed continuously in
accordance with the change in load, assuming we can always at least over estimate the load. This
extreme will obviously ensure that the optimum number of resources is always used. Obviously,
such a scheme is not possible since changing resources is not spontaneous. Challenge 1
highlights the overhead in allocating a resource. Thus, scaling resources up or down also
involves cost and needs to be optimized.

11.3 Auto-Scaling Resources Using Look-Ahead Optimizations

Control theory offers a promising methodology to address the challenges described in Section
11.2. It allows systematically solving a general class of dynamic resource provisioning problems
using the same basic control concepts, and to verify the feasibility of a control scheme before
deployment on the actual system. In more complex control problems a pre-specified plan called
the feedback map becomes inflexible and does not adapt well to constantly changing operating
conditions. Therefore, researchers have studied the use of more advanced state-space methods
adapted from model predictive control [74] and limited look-ahead supervisory control [75] to
manage such applications [76–78]. These methods offer a natural framework to accommodate
the above described system characteristics, and take into account multi-objective non-linear cost
functions, finite control input sets and dynamic operating constraints while optimizing
application performance. The autonomic approach proposed in [78], [79] describes a hierarchical
control based framework to manage the high level goals for a distributed computing system by
continuous observation of the underlying system performance. The key differences between
these previous works and our work are in the nature of the performance models.

The auto-scaling algorithm presented in this report does not use a reactive strategy. Instead it
provides a predictive solution leveraging concepts proposed by Sherif, et. al.[80], [81], which is

Approved for Public Release; Distribution Unlimited
74

applicable to systems that exhibit a hybrid behavior comprising both discrete-event and
continuous dynamics and have a possibly large but finite set of control options. Formally, it has
been shown before in the literature that dynamics of such systems can be captured using the
model of switching hybrid systems. It is known that for such systems a multi objective control
problem can be solved by using a limited look-ahead controller algorithm [80], [81], which is a
type of model predictive control. This is done by selecting actions that optimize system behavior
over a limited prediction horizon. The rest of this section describes our approach and shows how
we resolve the three challenges described in Section 11.2.

11.3.1 Workload Prediction

To apply model predictive control ideas to the problem discussed, we predict the workload on
the application and estimate the system behavior over the prediction horizon using a performance
model. The optimization of the system behavior is carried on by minimizing the cost incurred to
the application. This cost is a combination of various factors such as cost of SLA violations,
leasing cost of resources and a cost associated with the changes to the configuration. The
advantage of such a method is that it can be applied to various performance management
problems from systems with simple linear dynamics to complex ones. The performance model
can also be varied and corrected with system dynamics as conditions in the environment like
workload variation or faults in the system change.

In our strategy, workload prediction is needed to estimate the incoming workload of the system
for future time periods. Thankfully a number of techniques already exist in literature that can be
applied for forecasting the traffic incident on a service. We used a second order autoregressive
moving average method (ARMA) filter for the workload shown in Figure 28. The equation for
the filter used is given by

λ(t +1) = β × λ(t)+ γ × λ(t − 1) + (1 − (β + γ))(λ(t − 2)) (1)

The value for the variables β and γ are given by the values 0.8 and 0.15, respectively. Figure 29
shows the predicted workload compared to the actual workload.

Figure 29: Predicted versus Actual Workload

Approved for Public Release; Distribution Unlimited
75

11.3.2 Performance Model

The next challenge we resolve is identifying resource requirements for the predicted workload.
The right number of resources will provide the desired response times (or other performance
metrics) of the applications. For the above look-ahead framework we focus on response times of
the application under different hardware configurations. The workload used in this work is the
number of users currently in the system. It also depends upon what each user executes on the
system. For example, some users could be browsing while some users could be entering data in a
form. In our prior work [82] we have used Customer Behavior Modeling Graphs (CBMG) to
model the overall behavior of customers. A CBMG is built from a log of previous customer
behavior and computes the probability of a typical user to visit each page. Using this
information, we can calculate the number of visits to a single page from the total number of
customers in the system. The number of visits to each page helps in calculating the average load
on each page.

Our prior work also developed analytical models to accurately estimate response times, which
are used in Algorithm 1. This algorithm accepts the amount of workload given by a vector of
client populations, each member representing the number of clients in each job class. The
number of machines providing the service demand of the components and the think time for
clients is also given as input. Algorithm 1 initially creates a default placement strategy whereby
it places each tier of the application onto a particular machine. Purposefully we start off with a
low number of machines (2) and gradually increase the load to identify the right number of
resources required. This approach helps to avoid a situation where we need to reduce the number
of machines (M − 1) on each iteration. The algorithm makes a call onto the Mean Value
Analysis (MVA) algorithm. The MVA returns the utilization of each tier which can be used to
find the bottleneck machine (the machine with the highest utilization). The tier present in that
machine is then replicated and placed in a new machine which is introduced in that iteration. In
this manner, the iteration continues until the total number of machines equal the given maximum
machines.

Algorithm 1: Response Time Analysis (RTA)
Input: Ld, Predicted Workload

Hw, Total Machines available
SD, Service Demand for the job classes
Z, Think Time

Output:
Response Time R Vector of response times for all job classes

1 begin
2 // start with one machine per tier (2 in this case)
3 M = 2;
4 while M <= Hw do
5 // Get response time and server utilization by running MVA on

// analytical model presented in [20]
6 [R, U] = MVA (SD, Ld, Z);
7 i = maxUtil (U); // Get the index of the bottleneck tier
8 // Add a machine and replicate tier i on it to balance the load
9 M = M + 1
10 M = i
11 done
12 end

Approved for Public Release; Distribution Unlimited
76

11.3.3 Optimizing Resource Provisioning

To optimize resource usage and minimize idle resources, the best way would be to define a time
interval and change resources as many times as possible as workload changes. In the limit this
interval could be made infinitesimally small and resources changed continuously, however, as
noted earlier such an extreme solution is not feasible. The intuition therefore is to identify the
right number of time intervals in which to make these adjustments with the requirement that the
time interval is neither too small nor too large. Our solution works on the principle of receding
horizon control also known as look-ahead optimization [81].

This form of controller iteratively solves an optimization problem, Cost
opt

starting from t0, over a
predefined horizon (t = 1...N) taking into account current and future constraints. Once a feasible
sequence is found, only the first input in the sequence is applied and the rest are discarded.
Effectively, the optimization search results in the construction of a tree with branching factor K
and N + 1 levels. Here K is the total number of finite input choices. Formally, at time t0, given
state xt0

Cost
opt

= min {Cost({xt}, {ut})} where {} denotes a set

 , , 	 …	

ut ∈ U finite input choices

XN is the set of final goal states

	 , , , 	 	 	 	 	

Sequences {ut} = {u0, ··· ,uN−1} and{xt} = {x0, ··· ,xN−1} are the feasible input sequence and the
resulting states that trace a path from the root to the lead node in this search tree such that the net
cost across the sum of all branches is minimum and the leaf node is closest to the final
destination state. Given that this method needs finite input choices, we use a finite range of
machines that can be increased, decreased, or kept the same. The next challenge is the choice of
the look-ahead period. A small look-ahead period will neglect trends, while a very large period
will increase computational complexity and lead to a larger prediction error, which will yield any
control decision ineffective. Thus, the number of look-ahead periods needs to balance out the
different tradeoffs.

Our algorithm uses the receding horizon control and iterates over the number of look-ahead steps
and calculates the cumulative costs. For every future time step, it computes the cost of selecting
each possible resource allocation. To compute the cost of a particular allocation, it uses
Algorithm 1 to compute the estimated response time for that particular machine configuration.
Once the response time is calculated, it is used to calculate the cost of the allocation which is a
combination of how far the estimated response time is from the SLA bounds, cost of leasing
additional machines and also a cost of re-configuration.

Approved for Public Release; Distribution Unlimited
77

Wt = β × Wt−1 + γ × Wt−2 + (1 − β − γ) × Wt−3 (2)
Mt = Mt−1 + ut (3)
Rt = ResponseTimeAnalysis (Wt, Mt, SD, Z) (4)

The cost of reconfiguration is computed based on the number of machines that need to be
updated. Obviously re-configuration will incur some costs and thus the algorithm will try to
reduce the amount of reconfiguration. Each of these cost components will have weights attached
to them which may be varied depending on the type of application and its requirements.
Applications are required to specify which factors are more important to them, and our auto-
scaling algorithm will honor these specifications in making the decisions.

11.4 Experimental Evaluation

This section presents a subset of results evaluating our look-ahead algorithm for auto-scaling in
cloud environments [83]. We first show how the algorithm determines the number of resources
to be allocated in a just-in-time manner so that the overall cost is minimized. Next, the effects of
different cost weightings are studied.

This study is important since different applications may

impose different weighting combinations. The data used in this study is acquired from the 1998
soccer world cup web site shown in Figure 28. We use the number of customers visiting that site
as an indication of the amount of workload that typically can be experienced by such a globally
popular topic.

11.4.1 Just-in-time Resource Allocation

To evaluate the strength of our just-in-time resource allocation, we have used a cost function
shown in Equation 5 comprising three components. Recall that the three components of the cost
function refer individually to the penalty for violation of SLA bounds, cost of leasing a machine,
and cost of reconfiguring the application when machines are either leased or released. Each of
these components has a weight attached to it and the system can be made to always minimize a
certain component by increasing the attached weight to it to an arbitrary high value. Table 2
describes the components of the cost function.

Cost = Wr × (Rsla − R) + Wc × Mk + Wf × (Mk − Mk−1) (5)

Component Description Unit

Wr Penalty for SLA violation $/sec

Wc Cost of leasing a machine per hour $/machine

Wf Cost of reconfiguration $/machine

Rsla SLA for the observed response time sec

R Maximum response time for an application sec

Mk Number of machines used in the kth interval Numeric

Mk‐1 Number of machines used in the (k‐1)th interval Numeric
Table 2: Components of the Cost Equation

Approved for Public Release; Distribution Unlimited
78

For this experiment, the weights on each component of the cost function are the same, which
means all factors are equally important. Figure 30 shows how the look-ahead algorithm
determines changes in the resources required as the incoming load changes. The computation is
done on the basis of predicted workload which is done with the help of the ARMA filter given in
Equation 1. Figure 30 clearly shows that the base resources required are 2 machines and it
increases to 3 or 4 when the load is increased. The prediction of the look-ahead algorithm based
on a selected number of time intervals closely matches the incoming load. It prescribes a
resource increase whenever there is high load and fewer resources when there is a lower load.
Thus Figure 30 shows the effectiveness of the look-ahead algorithm and how it can save cost
while also assuring that the performance of the application is assured.

Figure 30: Just-in-time Resource Allocation with Changing Load

11.4.2 Resource Usage under Different Cost Priorities

The results in this section demonstrate the allocation/deallocation of resources stemming from
using different cost ratios among the three competing factors in the cost function of Equation 5.
The resource allocation determined by our algorithm in the different time intervals will depend
upon the weights assigned to the various components of the cost function. The rest of the section
studies the different trends of resource allocation and how they are influenced by the varying
weights of the cost function.

SLA violation against Resource Cost: We first show the results when considering the effect of
SLA violation against cost of resources. The ratio of the cost of SLA violation against the cost
of machines is varied while the application reconfiguration cost is assumed to be zero. We
assume that the application can be easily reconfigured with varying machines. The ratio of SLA
penalty to machine cost is varied from 4:1 (which means SLA violation is higher priority than
cost of the machine) to 1:13 (which means that the machine cost is higher priority than SLA
violation).

Figure 31 shows how the resources are allocated every hour over the entire time period. The
corresponding cost values are also shown in the bottom graph for each of these figures. The
intervals over which there is SLA violations are also shown. The algorithm always tries to keep
the cost to a minimum. It is seen that there is significant difference in resource allocation

Approved for Public Release; Distribution Unlimited
79

between the different configurations. An application with high SLA violation penalty has
stronger performance assurance whereas one with low SLA penalty has lesser performance
assurance. The priorities of the application determine the difference in resource allocation. For a
low performance assurance and high machine cost, the number of machines used is only two
over the entire time interval. The cost of machines exceeds the cost of SLA violations and such a
configuration will have to tolerate a number of SLA violations

Figure 31: Resource Allocation for Low SLA Violation Cost and High Machine Cost (1:13:0)

On the contrary, Figure 32 shows how the algorithm supports an application with a high SLA
violation cost. For the highly assured application of Figure 32, there is much variation in
resource usages with a number of intervals having 3 machines and also some having 4 machines.
Here the priority is in assuring performance and the cost of machines is much lower.

Finally, Figure 33 shows the distribution of the number of machines required for a variety of
systems ranging from highly assured systems (ratio of SLA violation penalty to machine cost
being 4 : 1) to very weakly assured systems (ratio of SLA violation penalty to machine cost
being greater than 1 : 13). In this figure, each point on the X-axis is a ratio of the cost of an SLA
violation to the cost of a machine. The Y-axis plots the number of intervals in which each type of
machine is used. For example, for the point corresponding to cost ratio of 1:4, 359 intervals use 2
machines and the other 143 intervals use 3 machines. The ratio of SLA violation cost-to-machine
cost increases as we move further down the X-axis. The figure shows more the use of 3 machines
than 2 machines as we move to the right. This outcome is because the relative cost of machines
decreases to the right and the penalty of SLA violation increases.

Approved for Public Release; Distribution Unlimited
80

Figure 32: Resource Allocation for High SLA Violation Cost (1:4:0)

Figure 33: Resource Allocation for Variety of Systems

Including the Cost of Reconfiguration: Figure 32 showed how resource allocation is done
when there is high SLA violation cost compared to machine cost. For this configuration, in every
interval, the mean response time is below the SLA bound and the machines are allocated
whenever they are needed. A machine is released again since there is cost of machine but only
making sure that the SLA is maintained. When there is a cost of reconfiguration introduced, the
algorithm will resist the changing of resources. This phenomenon can be related to inertia in
physical bodies. Inertia resists changes to its current physical condition such as a body in rest
resists movement while a body in motion resists slowing down. Thus, the cost of reconfiguration
will similarly resist the dynamic nature of resource allocation.

The higher the cost, the higher will be its resistance to the changes. This cost is expressed as the
third component of Equation 5. The weight Wf represents the level of inertia and it is multiplied

Approved for Public Release; Distribution Unlimited
81

by the change level which is the number of machines allocated or released. Initially when a small
amount of reconfiguration cost is introduced, it does not affect much as shown in Figure 35. The
resource allocation is similar to Figure 32. There are small deviations, where the spikes in
resource changes are a little wider in Figure 34 than in Figure 32. This is due to the inertia in
change introduced due to some cost associated with change.

Figure 34: High SLA Violation with Low Reconfiguration Cost

The effect of the cost of reconfiguration is more pronounced when it is prioritized slightly
higher. Figure 35 shows a distinct change in resource allocation over the hourly intervals
compared to Figure 32 or Figure 34. In Figure 35, the number of machines increases to 3 around
the 40th hour and remains steady. Somewhere around the 350th hour it increases to 4 machines
since the workload increased at that time. Subsequent to that, the workload decreased but the
machines were never released since the cost of reconfiguration is considered much higher
compared to the cost of machines. The changes of the machines around 40 and 350 hours was
warranted because of the high SLA violation cost and the machines were never released even
though the workload lessened since the cost of reconfiguration was higher.

Approved for Public Release; Distribution Unlimited
82

Figure 35: High SLA Violation with Medium Reconfiguration Cost

This behavior of resisting change is further pronounced in Figure 36 where there is even higher
cost of reconfiguration. Here again there is an increase of machines to 3 at around the 40 hour
mark and the machine is never released. The change to 4 machines which was seen in Figure 35
does not occur here because the cost of reconfiguration is much higher than the cost of SLA
violation. Thus even though there is SLA violation, it is only of a short duration (the peak
workload around 350 hours) and is of lesser cost than the cost of changing resources. That the
SLA violation near 300 hours was of a short duration can be understood from Figure 34 where
there is a very short spike of machine allocation to 4 around that time. When the cost of
reconfiguration becomes high, the look-ahead algorithm decides not to expend the extra cost of
reconfiguration to cover up that short SLA violation.

Figure 36: High SLA Violation with High Reconfiguration Cost

11.5 Concluding Remarks

Auto-scaling of resources helps cloud service providers operating modern day data centers to
support a maximal number of customers while assuring customer QoS requirements in
accordance with service level agreements, and keeping cost of using resources low for

Approved for Public Release; Distribution Unlimited
83

customers. However, current auto-scaling mechanisms require user input and programming of
APIs to adjust resources as workloads change. Reactive scaling of resources imposes
performance overheads while also making the programming of the cloud infrastructure tedious.
To address these problems, this report describes a look-ahead resource allocation algorithm
based on model-predictive control which predicts future workload based on a limited horizon
and adjusts resources allocated to users ahead-of-time. Empirical results evaluating our approach
show significant benefits both to cloud users and providers. The work presented demonstrates the
feasibility of our approach in the context of the small number of machines used. Our future work
will explore the scalability of our algorithms in the context of modern day workloads and large
numbers of resources, which are typical of contemporary applications.

Approved for Public Release; Distribution Unlimited
84

12. Runtime Infrastructure for Deployment and Configuration

This section focuses on the runtime infrastructure that enables the deployment and validation of
DoD system artifacts in the runtime execution environment. Predictable performance of these
capabilities is important for assuring QoS properties of DoD systems.

12.1 Introduction

Component-based middleware, such as the Lightweight CORBA Component Model, are
increasingly used to implement large-scale distributed, real-time and embedded (DRE) systems.
In addition to supporting the quality of service (QoS) requirements of individual DRE systems,
component technologies must also support bounded latencies when effecting deployment
changes to DRE systems in response to changing environmental conditions and operational
requirements.

Component-based software engineering techniques are increasingly applied to develop large-
scale distributed real-time and embedded (DRE) systems, such as air-traffic management,
shipboard computing environments, and distributed sensor webs. These domains are often
characterized as “open” since applications in these domains must contend not only with changing
environmental conditions (such as changing power levels, operational nodes, or network status),
but also evolving operational requirements and mission objectives [84].

To adapt to changing environments and operational requirements, it may be necessary to change
the deployment and configuration characteristics of these DRE systems at runtime. Examples of
potential adaptations include deployment or teardown of individual component instances, chang-
ing connection configuration, or altering QoS properties in the target component runtime. As a
result of stringent quality of service (QoS) requirements in these domains, it is important that any
changes to DRE system deployment and configuration occur as quickly and predictably as
possible. That is, DRE systems expect short and bounded deployment latencies.

Not only are timely and dependable runtime deployment and configuration changes essential in
DRE systems, even initial application startup time can be an important metric. For example, in
extremely energy-constrained systems, such as distributed sensor networks, a common power
saving strategy may involve completely deactivating field hardware and periodically restarting it
to take new measurements or activate actuators. In such environments, deployments must be fast
and time-bounded.

To support these requirements, the efficiency and QoS provided by the deployment infrastructure
should be considered alongside the component middleware used to develop DRE systems.
Standards, such as the Object Management Group (OMG) Deployment and Configuration
(D&C) specification [85] for component-based applications, have emerged in recent years.

The
OMG D&C specification provides comprehensive development, packaging, and deployment
frameworks for a wide range of component middleware. Although originally developed for the
CORBA Component Model (CCM), the OMG D&C specification is defined via a UML meta-
modeling that is applicable to many other component models.

Approved for Public Release; Distribution Unlimited
85

In the OMG D&C specification, deployment instructions are delivered to the deployment
infrastructure via a component deployment plan (CDP), which contains the complete set of
deployment and configuration information for component instances and their associated
connection information. During DRE system initialization, such information must be parsed,
components deployed on the nodes, and the system activated in a timely and predictable manner.
We refer to the timeliness of the deployment infrastructure as the “deployment latency,” which
includes the time starting when a CDP is provided to the deployment infrastructure to the time at
which all deployment instructions have been executed and the system activated.

This section motivates and describes architectural enhancements we made to the OMG D&C
specification to achieve predictable deployment latencies for large-scale DRE systems. Our
solution is called the Locality-Enhanced Deployment and Configuration Engine (LE-DAnCE),
which extends our earlier Deployment and Configuration Engine (DAnCE) [86]. We developed
DAnCE with the sole aim of cleanly separating concerns defined by the OMG D&C
specification and demonstrating its feasibility. After applying DAnCE to a range of
representative DRE systems, however, we found the lack of appropriate optimizations and archi-
tectural limitations of the OMG D&C specification yielded performance bottlenecks that
adversely impacted deployment latencies. Moreover, these performance bottlenecks stemmed
from more than just limitations with the original DAnCE implementation, but involve inherent
architectural limitations with the OMG D&C specification itself.

12.2 Impediments to Predictable Deployment Latency

We expose key sources of overhead that impact deployment latencies in DRE systems and
pinpoint the architectural limitations in the D&C specification that exacerbate these overheads.
The OMG D&C specification, whose architecture is shown in Figure 37 provides standard
interchange formats for metadata used throughout the component application development
lifecycle, as well as run time interfaces used for packaging and planning. Below we focus on the
interfaces, metadata, and architecture used for runtime deployment and configuration. The major
sources of latency overhead stem from multiple complexities in the OMG D&C standard,
including the processing of deployment metadata from disk in XML format and an architectural
ambiguity in the runtime infrastructure that encourages sub-optimal implementations.

Approved for Public Release; Distribution Unlimited
86

Figure 37: OMG D&C Architectural Overview

Challenge 1: Parsing Deployment Plans. Component application deployments for OMG D&C
are described by a data structure that contains all the relevant configuration metadata for the
component instances, their mappings to individual nodes, and any connection information
required. This CDP is serialized on disk in a XML file whose structure is described by an XML
Schema defined by the OMG D&C standard. This XML document format for CDP files presents
significant advantages by providing a simple interchange format between modeling tools, is easy
to generate and manipulate using widely available XML modules for popular programming
languages, and enables simple modification and data mining by text processing tools, such as
perl, grep, sed, and awk.

Processing these CDP files during deployment and even runtime, however, can lead to
substantial deployment latency costs [87]. This increased latency stems from the following
sources: XML CDP file sizes grow substantially as the number of component instances and
connections in the deployment increases, which causes significant I/O overhead to load the plan
into memory and to validate the structure against the schema to ensure that it is well-formed.

The XML document format cannot be directly used by the deployment infrastructure, so it must
first be converted into the native OMG Interface Definition Language (IDL) format used by the
runtime interfaces of the deployment framework. In many enterprise DRE systems, component
deployments that number in the thousands are not uncommon, and component instances in these
domains will exhibit a high degree of connectivity. Given the structure of these common DRE
systems, both these factors contribute to large plans. While the above latency source is most
immediately applicable to initial application deployment, it can also present a significant
problem during potential redeployment activities at application runtime that involve significant
changes to the application configuration. While CDP files that represent redeployment or
reconfiguration instructions may not be as large as for the initial deployment, the responsiveness
of the deployment infrastructure during these activities is even more important to ensure that the
application continues to meet its stringent QoS and end-to-end deadlines during online
modifications.

Approved for Public Release; Distribution Unlimited
87

Challenge 2: Serialized Execution of Deployment Actions. The complexities presented earlier
in this section involve the serial (non-parallel) execution of deployment tasks. The related
sources of latency in DAnCE exist at both the global and node level. At the global level, this lack
of parallelism results from the underlying CORBA transport used by DAnCE. The lack of
parallelism at the local level, however, results from the lack of specificity in terms of the
interface of the D&C implementation with the target component model that is contained in the
D&C specification. The D&C deployment process enables global entities to divide the
deployment process into a number of node-specific subtasks. Each subtask is dispatched to
individual nodes using a single remote invocation, with any data produced by the nodes passed
back to the global entities via “out” parameters that are part of the operation signature described
in IDL. Due to the synchronous nature of the CORBA messaging protocol used to implement
DAnCE, the conventional approach is to dispatch these sub-tasks serially to each node. This
approach is simple to implement, in contrast to the complexity of using the CORBA
asynchronous method invocation (AMI) mechanism [88].

To minimize initial implementation complexity, we used synchronous invocation (admittedly
shortsighted) in DAnCE. This global synchronicity did not cause problems for relatively small
deployments (less than 100 components). However, as the number of both nodes and instances
assigned to the nodes begin to scale up, the global/local serialization will impose a substantial
cost in deployment latency.

This serialization problem is not limited only to the global/local task dispatching, but also exists
in the node-specific portion of the infrastructure. The D&C specification provides no guidance in
terms of how the Node-Application should interface with the target component model (in this
case, CCM), instead leaving such an interface as an implementation detail. Early versions of
DAnCE directly instantiated the CCM containers and components directly in the address space
of the Node Application. To alleviate the resulting tedious and error-prone deployment logic, we
later separated the CCM container into a separate process. In DAnCE, the D&C architecture was
implemented using three processes, as shown in Figure 38.

Figure 38: Simplified DAnCE Architecture

The Execution Manager and Node Manager processes instantiate their associated Application
Manager and Application instances in their address space. When the Node Application installs
the concrete component instances it spawns one, or more, separate component server processes

Approved for Public Release; Distribution Unlimited
88

as needed. The component server processes use an interface derived from an older version of the
CCM specification that allows the Node Application to individually instantiate containers and
component instances. This approach is similar to that taken by CARDAMOM
(cardamom.objectweb.org), which is another CCM implementation tailored for enterprise DRE
systems, such as air-traffic management systems.

While the DAnCE architecture shown in Figure 38 improved upon the original implementation
that collocated all CCM entities in Node Application address space, it was still problematic with
respect to parallelization. Rather than performing only some processing and delegating the
remainder of the concrete deployment logic to the component server process, the DAnCE Node
Application implementation instead integrates all logic necessary for installing, configuring, and
connecting instances directly, as shown in Figure 39.

Figure 39: DAnCE Node Application Implementation

This tight integration made it hard to optimize the node-level installation process for the
following reasons:

 The amount of data shared by the generic deployment logic (the portion of the Node
Application implementation that interprets the plan) and the specific deployment logic (the
portion which has specific knowledge of how to manipulate components) made it hard to
parallelize their installation since that data must be modified during installation.

 Since groups of components installed to separate component servers can be considered
separate deployment sub-tasks, these groupings could be also parallelized.

12.3 Overcoming Deployment Latency Bottlenecks in Le-Dance

12.3.1 Improving Runtime Plan Processing

There are two approaches to resolving the challenge of XML:

1. Optimize the XML to IDL processing capability. DAnCE uses a vocabulary-specific XML
data binding [89] tool called the XML Schema Compiler (XSC). XSC reads D&C XML
schemas and generates a C++-based interface to XML documents built atop the Document

Approved for Public Release; Distribution Unlimited
89

Object Model (DOM) XML programming API. In general, DOM is a time/space-intensive
approach since the entire document must first be processed to fully construct a tree-like
representation of the document before the XML-to-IDL translation process can occur.

An alternative is to use the Simple API for XML (SAX), which uses an event-based
processing model to process XML files as they are read from disk. While a SAX-based
parser would reduce the time/space spent building the in-memory representation of the XML
document, the performance gains may be too small to invest the substantial development
time required to re-factor the DAnCE configuration handlers, which serve as a bridge
between the XSC-generated code and IDL. In particular, a SAX-based approach would still
require a substantial amount of runtime text-based processing. Moreover, CDP files have
substantial amounts of internal cross-referencing, which would require the entire document
be processed before any actual XML-to-IDL conversion could occur.

2. Pre-process the XML files for latency-critical deployments. This optimization approach
(used by LE-DAnCE) is accomplished via a tool we developed that leverages the existing
DOM-based XML-to-IDL conversion handlers in DAnCE to (1) convert the CDP into its
runtime IDL representation and (2) serialize the result to disk using the Common Data
Representation (CDR) binary format defined by the CORBA specification. This platform-
independent binary format used to store the CDP on disk is the same format used to transmit
the plan over the network at runtime. The advantage of this approach is that it leverages the
heavily optimized de-serialization handlers provided by the underlying CORBA
implementation (TAO) to create an in-memory representation of the CDP data structure from
the on-disk binary stream.

12.3.2 Parallelizing Deployment Activity

To support parallelized dispatch of deployment activity at the node level, we enhanced the OMG
D&C standard by adding a Locality Manager to LE-DAnCE. The Locality-Manager unifies all
three deployment roles, and functions as a replacement for the component server in Figure 38.
An overview of LE-DAnCE’s Locality-Manager appears in [90].

The LE-DAnCE node-level architecture (e.g.,Node Manager, Node Application Manager, and
Node Application) now functions as a node-constrained version of the global portion of the
OMG D&C architecture. Rather than having the Node Application directly causing the
installation of concrete component instances, this responsibility is now entirely delegated to
Locality Manager instances. The node-level infrastructure performs a second “split” of the plan it
receives from the global level by grouping component instances into one or more component
servers. The Node Application then spawns a number of Locality Manager processes and
delegates these “process-constrained” (i.e., containing only components and connections apropos
to a single process) plans to each process in parallel.

Unlike the previous DAnCE Node Application implementation, the LE-DAnCE Locality
Manager functions as a generic application server that maintains a strict separation of concerns
between the general deployment logic required to analyze the plan and the specific deployment
logic required to actually install and manage the lifecycle of concrete component middleware
instances. This separation is achieved using entities called Instance Installation Handlers, which

Approved for Public Release; Distribution Unlimited
90

provide a well-defined interface for managing the life-cycle of a component instance, including
installation, removal, connection, disconnection, and activation. Installation Handlers are also
used in the context of the Node Application to manage the life-cycle of Locality Manager
processes.

Figure 40 shows the startup process for a Locality Manager instance. During the start launch
phase of deployment, an Installation Handler hosted in the Node Application spawns a Locality
Manager process and handles the initial handshake to provide configuration information. The
Node Application then instructs the Locality Manager to begin deployment by invoking
preparePlan() and startLaunch(). During this process, the Locality Manager will examine the
plan to determine what instance types must be installed (e.g., container, component, or home).
After loading the appropriate Installation Handlers will delegate the actual installation process
for these instances via the install_instance() method on the Installation Handler.

Figure 40: Locality Manager Startup Sequence

The new LE-DAnCE Locality Manager and Installation Handlers make it substantially easier to
parallelize than in DAnCE. Parallelism in both the Locality Manager and Node Application is
achieved using an entity called the Deployment Scheduler, which is shown in Figure 41. The
Deployment Scheduler combines the Command pattern [91] and the Active Object pattern [92].
Individual deployment actions (e.g., instance installation, instance connection, etc.) are encased
inside an Action object, along with any required metadata. Each individual deployment action is
an invocation of a method on an Installation Handler, so these actions need not be re-written for
each potential deployment target. Error handling and logging logic is also fully contained within
individual actions, further simplifying the Locality-Manager.

Individual actions (e.g., install a component or create a connection) are scheduled for execution
by a configurable threadpool, which can provide user-selected single-threaded or multi-threaded
behavior, depending on the requirements of the application. This thread pool could also be used
to implement more sophisticated scheduling behavior. For example, it might be desirable to

Approved for Public Release; Distribution Unlimited
91

implement a priority-based scheduling algorithm that dynamically reorders the installation of
component instances based on metadata present in the plan.

Figure 41: DAnCE Deployment Scheduler

During deployment, the Locality Manager determines which actions to perform during each
particular phase and creates one Action object for each instruction. These actions are then passed
to the deployment scheduler for execution while the main thread of control waits for a
completion signal from the Deployment Scheduler. Upon completion, the Locality-Manager
reaps either return values or error codes from the completed actions and completes the
deployment phase.

To provide parallelism between Locality Manager instances on the same node the LE-DAnCE
Deployment Scheduler is also used in the implementation of the Node Application, along with an
Installation Handler for Locality Manager processes. Using the Deployment Scheduler at this
level also helps to overcome a significant source of latency whilst conducting node-level
deployments. Spawning Locality Manager instances can take a significant amount of time
compared to the deployment time required for component instances, so parallelizing this process
can achieve significant latency savings when application deployments have many Locality-
Manager processes per node.

12.4 Concluding Remarks

This section described the OMG Deployment and Configuration (D&C) specification for
component-based applications and explored sources of deployment latency overhead that
degraded the responsiveness of the Deployment And Configuration Engine (DAnCE),which is an
open-source implementation of the D&C specification. We then explained how our Locality-
Enhanced Deployment and Configuration Engine (LE-DAnCE) enhanced DAnCE to alleviate
key sources of deployment latency overhead associated with XML preprocessing and
LocalityManager architecture. The effectiveness of the LE-DAnCE LocalityManager
architecture was then empirically evaluated [87] by (1) deploying a number of high component-
density applications to demonstrate the performance of the toolchain as the number of

Approved for Public Release; Distribution Unlimited
92

components grows and (2) measuring the predictability of these performance results by
repeatedly deploying the same setup on a 1,000 component deployment.

The following lessons were learned conducting this research: Split Plan process incurs
significant deployment latency. The results showed that the plan preparation phase of
deployment is a large source of deployment latency, due in large part to inefficiency in the LE-
DAnCE “split plan” algorithm [87]. To alleviate this inefficiency our future work will determine
if this algorithm can further be optimized or investigate ways that the plan can be split before
deployment to reduce runtime deployment latency.

The startLaunch operation is a significant source of jitter. The start launch phase of deployment
produces the largest amount of jitter in the LE-DAnCE deployment process. Prior experiments
[93] conducted on DAnCE showed this jitter stemmed from the dynamic loading of component
implementations at runtime and can be alleviated by directly compiling component
implementations and plan metadata into the deployment infrastructure. While this approach
reduces jitter and latency, it is also invasive into the D&C implementation, hard to maintain, and
removes much of the flexibility from the D&C toolchain. Our future work is exploring more
flexible ways to reduce this jitter via work that builds on these previous efforts.

CIAO and LE-DAnCE are open-source software and all work described is available in the latest
version which can be obtained from download.dre.vanderbilt.edu.

Approved for Public Release; Distribution Unlimited
93

13. Conclusions

13.1 Summary

Our prior work in the Air Force’s Global Information Grid (GIG), Army’s Future Combat
Systems (FCS) program, and the Navy’s DDG 1000 program activities motivated a challenging
problem facing developers of large-scale and layered DoD software-intensive net-centric
systems: how to discover, measure, and rectify structural, integration, and/or performance
problems early in the system's lifecycle (e.g., in the architecture and design phases), as opposed
to the final system integration phase, when mistakes are much harder and more costly to fix. We
observed that the bulk of today’s software technologies and validation/verification techniques are
designed to develop and analyze relatively small-scale systems, where the set of tasks that will
run in the system and their requirements for system resources are known in advance.
Unfortunately, these technologies are poorly suited for large-scale DoD systems, where it is not
possible to know the entire set of application tasks that will run on the system, the loads they will
impose on system resources in response to a dynamically changing environment, or the order in
which the tasks will execute. Moreover, even in today’s smaller-scale DoD systems where load
is known in advance, there is often little confidence that system quality of service (QoS)
requirements will be met in the deployment phase due to the complexities of analyzing complex
systems built atop commercial-off-the-shelf (COTS) hardware and software components.

Net-centric DoD systems must provide QoS support to process the right data in the right place at
the right time over a networked grid of computers. Some QoS properties required by these DoD
systems include the low latency and jitter as expected in conventional real-time and embedded
systems, and high throughput, scalability, and reliability as expected in conventional enterprise
distributed systems. Achieving this combination of QoS capabilities in DoD systems is hard,
particularly when the systems are developed using COTS hardware/software components.

The three year project called “System Execution Modeling Technologies for Large-scale Net-
centric DoD Systems” conducted research to address these challenges, and resulted in practical
artifacts as part of a tool suite called “GUTS: GEMS Utilization Test Suite.” The R&D we
conducted sought solutions along three dimensions:

 Design-time solutions – where we conducted R&D in model-based algorithms and
technologies;

 Deployment-time solutions – where we conducted R&D on a variety of deployment-
related optimization solutions, often based on heuristics;

 Run-time solutions – where we conducted R&D on runtime architectures to support the
design- and deployment-time decisions.

During the course of the project, we focused primarily on emerging platforms and technologies
of interest to DoD including cloud environments and mobile platforms, all the while focusing on
validating and assuring QoS properties as well as other physical properties, such as energy and
power consumed, and environmental issues. All the artifacts we have developed are available in
open source. In particular, the following URLs summarize the availability of these tools:

Approved for Public Release; Distribution Unlimited
94

 CoSMIC/CUTS SEM tools that are part of GUTS are available from
http://www.dre.vanderbilt.edu/cosmic

 GEMS is available from the Eclipse modeling project pages at
http://www.eclipse.org/gmt/gems/

 ASCENT and related technologies are available from http://code.google.com/p/ascent-
design-studio/

 All middleware sources are available from http://www.dre.vanderbilt.edu/downloads

13.2 Future Work

Our work to date has made initial forays into the world of resource management and deployment
optimizations for tactical cloud environments that will increasingly be essential to realize
increasingly complex DoD systems and operations. With the increasing proliferation of mobile
devices including smart phones, and significant challenges stemming from security issues, we
believe there are ample opportunities to conduct additional R&D. In particular, we will leverage
our new DURIP equipment award to set up a smart phone-based cloud environment, and seek
solutions to emerging problems in this space.

13.3 Representative Publications

This project resulted in multiple publications. Below we list the relevant and major publications
stemming from the effort that covers the entire range of our contributions.

1. J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-Cortez. “Automated
Diagnosis of Product-line Configuration Errors in Feature Models,” In Proceedings of the
Software Product Lines Conference (SPLC), Limerick, Ireland, Sept. 2008.

2. J. White, D. Benavides, B. Dougherty, and D. Schmidt. “Automated Reasoning for Multi-
step Configuration Problems,” In Proceedings of the Software Product Lines Conference
(SPLC), San Francisco, USA, Aug. 2009.

3. J. White, B. Dougherty, and D. Schmidt. “Selecting highly optimal architectural feature
sets with Filtered Cartesian Flattening,” The Journal of Systems & Software, 82(8):1268–
1284, 2009.

4. J. White, B Dougherty, C. Thompson, and D. C. Schmidt. “ScatterD: Spatial Deployment
Optimization with Hybrid Heuristic / Evolutionary Algorithms,” Proceedings of the
Conference on Evolutionary Algorithms, 2010; Also to Appear in ACM Transactions on
Autonomous and Adaptive Systems Special Issue on Spatial.

5. A. Shah, K. Ann, A. Gokhale, and J. White, “Maximizing Service Uptime of
Smartphone-based Distributed Real-time and Embedded Systems,” Proceedings of the

Approved for Public Release; Distribution Unlimited
95

IEEE 14th IEEE International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC), 2011, Irvine, CA, USA, pp. 3—10.

6. N. Roy, A. Dubey, and A. Gokhale, “Efficient Autoscaling in the Cloud Using Predictive
Models for Workload Forecasting,” Proceedings of the 4th IEEE International
Conference on Cloud Computing (CLOUD ’11), Washington, D.C, USA, July 4—9,
2011, pp. 500—507.

7. W. Otte, A. Gokhale, and D. C. Schmidt, “Predictable Deployment in Component-based
Enterprise Distributed Real-time and Embedded Systems,” Proceedings of the ACM
Component-based Software Engineering, Boulder, CO, June 2011, pp. 21—30.

8. J. White, B. Dougherty, C. Thompson, and D. C. Schmidt, “ScatterD: Spatial
Deployment Optimization with Hybrid Heuristic,” in Evolutionary Algorithms, 2010.

9. J. White, B. Doughtery, and D. C. Schmidt, “Ascent: An algorithmic technique for
designing hardware and software in tandem,” IEEE Transactions on Software
Engineering, pp. 838–851, 2010.

10. W. Otte, D. Schmidt, and A. Gokhale, “Towards an Adaptive Deployment and
Configuration Framework for Component-based Distributed Systems,” in 9th Workshop
on Adaptive and Reflective Middleware (ARM ’10), Begaluru, India, 2010.

Approved for Public Release; Distribution Unlimited
96

14. References

[1] R. P. Gabriel, L. Northrop, D. C. Schmidt, and K. Sullivan, “Ultra-large-scale systems,” in
Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, 2006, pp. 632–634.

[2] J. Cohen, “Constraint logic programming languages,” Communications of the ACM, vol.
33, no. 7, pp. 52–68, 1990.

[3] P. Van Hentenryck, “Constraint satisfaction in logic programming,” 1989.
[4] J. A. Nelder and R. Mead, “A simplex method for function minimization,” The computer

journal, vol. 7, no. 4, p. 308, 1965.
[5] C. U. Smith and L. G. Williams, Performance Solutions: a practical guide to creating

responsive, scalable software, vol. 34. Addison-Wesley Boston, MA;, 2002.
[6] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,” Computer, vol.

39, no. 2, pp. 25–31, 2006.
[7] S. Kent, “Model driven engineering,” in Integrated Formal Methods, 2002, pp. 286–298.
[8] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages: An annotated

bibliography,” ACM Sigplan Notices, vol. 35, no. 6, pp. 26–36, 2000.
[9] S. Kelly and J. P. Tolvanen, Domain-specific modeling: enabling full code generation.

Wiley-IEEE Computer Society Pr, 2008.
[10] Á. Lédeczi et al., “Composing domain-specific design environments,” Computer, vol. 34,

no. 11, pp. 44–51, 2001.
[11] S. Paunov, J. Hill, D. Schmidt, S. D. Baker, and J. M. Slaby, “Domain-specific modeling

languages for configuring and evaluating enterprise DRE system quality of service,” in
Engineering of Computer Based Systems, 2006. ECBS 2006. 13th Annual IEEE
International Symposium and Workshop on, p. 10–pp.

[12] J. M. Slaby, S. Baker, J. Hill, and D. C. Schmidt, “Applying system execution modeling
tools to evaluate enterprise distributed real-time and embedded system QoS,” 2006.

[13] J. White, A. Nechypurenko, E. Wuchner, and D. C. Schmidt, “Intelligence frameworks for
assisting modelers in combinatorically challenging domains,” in Proceedings of the
Workshop on Generative Programming and Component Engineering for QoS Provisioning
in Distributed Systems at the Fifth International Conference on Generative Programming
and Component Engineering (GPCE 2006), 2006.

[14] K. Balasubramanian, J. Balasubramanian, J. Parsons, A. Gokhale, and D. C. Schmidt, “A
platform-independent component modeling language for distributed real-time and
embedded systems,” in Real Time and Embedded Technology and Applications Symposium,
2005. RTAS 2005. 11th IEEE, 2005, pp. 190–199.

[15] K. Balasubramanian, J. Balasubramanian, J. Parsons, A. Gokhale, and D. C. Schmidt, “A
platform-independent component modeling language for distributed real-time and
embedded systems,” Journal of Computer and System Sciences, vol. 73, no. 2, pp. 171–185,
2007.

[16] J. H. Hill, S. Tambe, and A. Gokhale, “Model-driven engineering for development-time
QoS validation of component-based software systems,” in Engineering of Computer-Based
Systems, 2007. ECBS’07. 14th Annual IEEE International Conference and Workshops on
the, 2007, pp. 307–316.

[17] N. Wang et al., “Total quality of service provisioning in middleware and applications,”
Microprocessors and Microsystems, vol. 27, no. 2, pp. 45–54, 2003.

Approved for Public Release; Distribution Unlimited
97

[18] D. C. Schmidt, “Middleware for real-time and embedded systems,” Communications of the
ACM, vol. 45, no. 6, pp. 43–48, 2002.

[19] J. M. Voas, “Certifying off-the-shelf software components,” Computer, vol. 31, no. 6, pp.
53–59, 1998.

[20] A. Gokhale, D. C. Schmidt, B. Natarajan, and N. Wang, “Applying model-integrated
computing to component middleware and enterprise applications,” Communications of the
ACM, vol. 45, no. 10, pp. 65–70, 2002.

[21] J. D. Poole, “Model-driven architecture: Vision, standards and emerging technologies,” in
Workshop on Metamodeling and Adaptive Object Models, ECOOP, 2001.

[22] D. Sabin and E. C. Freuder, “Configuration as composite constraint satisfaction,” in
Proceedings of the Artificial Intelligence and Manufacturing Research Planning Workshop,
1996, pp. 153–161.

[23] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Automated reasoning on feature models,”
in Advanced Information Systems Engineering, 2005, pp. 491–503.

[24] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged configuration through specialization
and multilevel configuration of feature models,” Software Process: Improvement and
Practice, vol. 10, no. 2, pp. 143–169, 2005.

[25] J. White, B. Dougherty, and D. C. Schmidt, “Selecting highly optimal architectural feature
sets with Filtered Cartesian Flattening,” Journal of Systems and Software, vol. 82, no. 8, pp.
1268–1284, 2009.

[26] M. Akbar, E. Manning, G. Shoja, and S. Khan, “Heuristic solutions for the multiple-choice
multi-dimension knapsack problem,” Computational Science-ICCS 2001, pp. 659–668,
2001.

[27] J. White, B. Doughtery, and D. C. Schmidt, “Ascent: An algorithmic technique for
designing hardware and software in tandem,” IEEE Transactions on Software Engineering,
pp. 838–851, 2010.

[28] J. White, D. C. Schmidt, and S. Mulligan, “The generic eclipse modeling system,” in
Model-Driven Development Tool Implementer’s Forum, TOOLS, 2007, vol. 7.

[29] J. White and D. C. Schmidt, “Fireant: A tool for reducing enterprise product line
architecture deployment, configuration, and testing costs,” in Engineering of Computer
Based Systems, 2006. ECBS 2006. 13th Annual IEEE International Symposium and
Workshop on, 2006, p. 2–pp.

[30] H. Beitollahi and G. Deconinck, “Fault-tolerant partitioning scheduling algorithms in real-
time multiprocessor systems,” 2006.

[31] M. Mikic-Rakic and N. Medvidovic, “Architecture-level support for software component
deployment in resource constrained environments,” Component Deployment, pp. 493–502,
2002.

[32] N. R. C. (US). S. C. for the D. S. of C. Aeronautics, N. R. C. (US). D. on Engineering, and
P. Sciences, Decadal survey of civil aeronautics: foundation for the future. National
Academies Press, 2006.

[33] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On task schedulability in real-time
control systems,” in rtss, 1996, p. 13.

[34] S. Lauzac, R. Melhem, and D. Mossé, “Comparison of global and partitioning schemes for
scheduling rate monotonic tasks on a multiprocessor,” in Real-Time Systems, 1998.
Proceedings. 10th Euromicro Workshop on, 1998, pp. 188–195.

Approved for Public Release; Distribution Unlimited
98

[35] A. A. Bertossi, L. V. Mancini, and F. Rossini, “Fault-tolerant rate-monotonic first-fit
scheduling in hard-real-time systems,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 10, no. 9, pp. 934–945, 1999.

[36] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son, “New strategies for assigning real-time
tasks to multiprocessor systems,” Computers, IEEE Transactions on, vol. 44, no. 12, pp.
1429–1442, 1995.

[37] S. K. Dhall and C. Liu, “On a real-time scheduling problem,” Operations Research, pp.
127–140, 1978.

[38] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-
time environment,” Journal of the ACM (JACM), vol. 20, no. 1, pp. 46–61, 1973.

[39] D. De Niz and R. Rajkumar, “Partitioning bin-packing algorithms for distributed real-time
systems,” International Journal of Embedded Systems, vol. 2, no. 3, pp. 196–208, 2006.

[40] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural Networks, 1995.
Proceedings., IEEE International Conference on, 1995, vol. 4, pp. 1942–1948.

[41] J. P. Lehoczky, L. Sha, J. K. Strosnider, and others, “Enhanced aperiodic responsiveness in
hard real-time environments,” in Proceedings of the IEEE Real-Time Systems Symposium,
1987, pp. 261–270.

[42] L. Sha and J. B. Goodenough, “Real-time scheduling theory and Ada,” Computer, vol. 23,
no. 4, pp. 53–62, 1990.

[43] J. K. Strosnider and T. E. Marchok, “Responsive, deterministic IEEE 802.5 token ring
scheduling,” Real-Time Systems, vol. 1, no. 2, pp. 133–158, 1989.

[44] A. Carzaniga, A. Fuggetta, R. S. Hall, A. Van Der Hoek, D. Heimbigner, and A. L. Wolf,
“A characterization framework for software deployment technologies,” Dept. of Computer
Science, University of Colorado, Tech. Rep., April, 1998.

[45] J. A. Stankovic, “Strategic directions in real-time and embedded systems,” ACM
Computing Surveys (CSUR), vol. 28, no. 4, pp. 751–763, 1996.

[46] W. Damm, A. Votintseva, A. Metzner, B. Josko, T. Peikenkamp, and E. B\öde, “Boosting
re-use of embedded automotive applications through rich components,” Proceedings of
Foundations of Interface Technologies, vol. 2005, 2005.

[47] J. White, B. Dougherty, C. Thompson, and D. C. Schmidt, “ScatterD: Spatial Deployment
Optimization with Hybrid Heuristic,” in Evolutionary Algorithms, 2010.

[48] C. M. Fonseca and P. J. Fleming, “Genetic Algorithms for Multiobjective Optimization:
Formulation, Discussion and Generalization,” in Genetic Algorithms, 1993, p. 416.

[49] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,” Swarm intelligence,
vol. 1, no. 1, pp. 33–57, 2007.

[50] M. Joseph and P. Pandya, “Finding response times in a real-time system,” The Computer
Journal, vol. 29, no. 5, p. 390, 1986.

[51] D. Nurmi et al., “The eucalyptus open-source cloud-computing system,” in Proceedings of
the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid,
2009, pp. 124–131.

[52] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. Obbink, and K. Pohl, “Variability issues
in software product lines,” Software Product-Family Engineering, pp. 303–338, 2002.

[53] K. C. Kang, “Feature-oriented domain analysis (FODA) feasibility study,” DTIC
Document, 1990.

[54] V. Kumar, “Algorithms for constraint-satisfaction problems: A survey,” AI magazine, vol.
13, no. 1, p. 32, 1992.

Approved for Public Release; Distribution Unlimited
99

[55] “Computer Center PowerNap Plan Could Save 75 Percent Of Data Center Energy.”
[Online]. Available: http://www.sciencedaily.com/releases/2009/03/090305164353.htm.
[Accessed: 08-Sep-2011].

[56] D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: eliminating server idle power,”
ACM SIGPLAN Notices, vol. 44, no. 3, pp. 205–216, 2009.

[57] E. S. Rubin, A. B. Rao, and C. Chen, “Comparative assessments of fossil fuel power plants
with CO2 capture and storage,” 2004.

[58] R. Hankey, “Electric Power Monthly.” [Online]. Available:
http://www.eia.gov/cneaf/electricity/epm/epm_sum.html. [Accessed: 08-Sep-2011].

[59] A. Berl et al., “Energy-efficient cloud computing,” The Computer Journal, vol. 53, no. 7,
p. 1045, 2010.

[60] L. Liu et al., “GreenCloud: a new architecture for green data center,” in Proceedings of the
6th international conference industry session on Autonomic computing and
communications industry session, 2009, pp. 29–38.

[61] A. Bateman and M. Wood, “Cloud computing,” Bioinformatics, vol. 25, no. 12, p. 1475,
2009.

[62] A. Beloglazov and R. Buyya, “Energy efficient allocation of virtual machines in cloud data
centers,” in 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, 2010, pp. 577–578.

[63] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-Efficient management of data center
resources for cloud computing: A vision, architectural elements, and open challenges,”
Arxiv preprint arXiv:1006.0308, 2010.

[64] S. Hazelhurst, “Scientific computing using virtual high-performance computing: a case
study using the Amazon elastic computing cloud,” in Proceedings of the 2008 annual
research conference of the South African Institute of Computer Scientists and Information
Technologists on IT research in developing countries: riding the wave of technology, 2008,
pp. 94–103.

[65] G. Singh, P. J. Young, N. C. Rowe, and T. S. Anderson, “Inexpensive seismic sensors for
early warning of military sentries,” in Proceedings of SPIE, 2010, vol. 7706, p. 77060J.

[66] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in Mobile
Computing Systems and Applications, 1999. Proceedings. WMCSA’99. Second IEEE
Workshop on, 1999, pp. 90–100.

[67] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-vector
routing (DSDV) for mobile computers,” ACM SIGCOMM Computer Communication
Review, vol. 24, no. 4, pp. 234–244, 1994.

[68] T. B\äck, Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. Oxford University Press, USA, 1996.

[69] R. Simmons et al., “Coordinated deployment of multiple, heterogeneous robots,” in
Intelligent Robots and Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ
International Conference on, 2000, vol. 3, pp. 2254–2260.

[70] M. C. Bastarrica, A. A. Shvartsman, and S. A. Demurjian, “A Binary Integer Programming
Model for Optimal Object Distribution,” in OPODIS, 1998, pp. 211-226.

[71] J. N. Hooker, “Planning and scheduling by logic-based benders decomposition,”
OPERATIONS RESEARCH-BALTIMORE THEN LINTHICUM-, vol. 55, no. 3, p. 588,
2007.

Approved for Public Release; Distribution Unlimited
100

[72] J. R. Koza, On the programming of computers by means of natural selection, vol. 1. MIT
press, 1996.

[73] M. Armbrust et al., “A view of cloud computing,” Communications of the ACM, vol. 53,
no. 4, pp. 50–58, 2010.

[74] J. M. Maciejowski, Predictive control: with constraints. Pearson education, 2002.
[75] S. L. Chung, S. Lafortune, and F. Lin, “Limited lookahead policies in supervisory control

of discrete event systems,” Automatic Control, IEEE Transactions on, vol. 37, no. 12, pp.
1921–1935, 1992.

[76] S. Abdelwahed, S. Neema, J. Loyall, and R. Shapiro, “A hybrid control design for QoS
management,” in Real-Time Systems Symposium, 2003. RTSS 2003. 24th IEEE, 2003, pp.
366–369.

[77] S. Abdelwahed, N. Kandasamy, and S. Neema, “Online control for self-management in
computing systems,” in 10th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS’04), 2004, p. 368.

[78] N. Kandasamy, S. Abdelwahed, and M. Khandekar, “A hierarchical optimization
framework for autonomic performance management of distributed computing systems,”
2006.

[79] D. Kusic, N. Kandasamy, and G. Jiang, “Approximation modeling for the online
performance management of distributed computing systems,” World, vol. 1200, p. 1400,
1998.

[80] S. Abdelwahed, J. Bai, R. Su, and N. Kandasamy, “On the application of predictive control
techniques for adaptive performance management of computing systems,” Network and
Service Management, IEEE Transactions on, vol. 6, no. 4, pp. 212–225, 2009.

[81] S. Abdelwahed, N. Kandasamy, and S. Neema, “A control-based framework for self-
managing distributed computing systems,” in Proceedings of the 1st ACM SIGSOFT
workshop on Self-managed systems, 2004, pp. 3–7.

[82] N. Roy, A. Dubey, A. Gokhale, and L. Dowdy, “A Capacity Planning Process for
Performance Assurance of Component-based Distributed Systems,” in Proceeding of the
second joint WOSP/SIPEW international conference on Performance engineering, 2011,
pp. 259–270.

[83] N. Roy, A. Dubey, and A. Gokhale, “Efficient Autoscaling in the Cloud Using Predictive
Models for Workload Forecasting,” in IEEE 4th International Conference on Cloud
Computing, Washington, D.C, USA, 2011, pp. 500-507.

[84] C. D. Gill et al., “Integrated adaptive QoS management in middleware: A case study,”
Real-Time Systems, vol. 29, no. 2, pp. 101–130, 2005.

[85] “OMG. Deployment and Configuration of Component-based Distributed Applications.”
Object Management Group formal/2006-04-04, Apr 2006.

[86] G. Deng, J. Balasubramanian, W. Otte, D. Schmidt, and A. Gokhale, “DAnCE: a QoS-
enabled component deployment and configuration engine,” Component Deployment, pp.
67–82, 2005.

[87] W. R. Otte, A. Gokhale, and D. C. Schmidt, “Predictable Deployment in Component-based
Enterprise Distributed Real-time and Embedded Systems,” presented at the CBSE ’11,
Boulder, CO, USA, 2011.

[88] A. Arulanthu, C. O’Ryan, D. Schmidt, M. Kircher, and J. Parsons, “The design and
performance of a scalable ORB architecture for CORBA asynchronous messaging,” in
Middleware 2000, 2000, pp. 208–230.

Approved for Public Release; Distribution Unlimited
101

[89] J. White, B. Kolpackov, B. Natarajan, and D. C. Schmidt, “Reducing application code
complexity with vocabulary-specific XML language bindings,” in Proceedings of the 43rd
annual Southeast regional conference-Volume 2, 2005, pp. 281–287.

[90] W. Otte, D. Schmidt, and A. Gokhale, “Towards an Adaptive Deployment and
Configuration Framework for Component-based Distributed Systems,” in 9th Workshop on
Adaptive and Reflective Middleware (ARM ’10), Begaluru, India, 2010.

[91] E. Gamma, Design patterns: elements of reusable object-oriented software. Addison-
Wesley Professional, 1995.

[92] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects, Volume 2. Wiley, 2000.

[93] V. Subramonian et al., “The design and performance of component middleware for QoS-
enabled deployment and configuration of DRE systems,” Journal of Systems and Software,
vol. 80, no. 5, pp. 668–677, 2007.

Approved for Public Release; Distribution Unlimited
102

Appendix A. List of Acronyms
ACE Adaptive Communication Environment

AMI Asynchronous Method Invocation
AMP ASCENT Modeling Platform
ANT Another Neat Tool
API Application Programming Interface
ARMA AutoRegressive Moving Average

ASCENT Allocation baSed Configuration ExploratioN Technique
ATLAS Automatically Tuned Linear Algebra Software
BLITZ Bin packing LocatIon Technique for processor minimiZation
BON2 Builder Object Network

CBMG Customer Behavior Modeling Graphs
CBML Component Behavior Modeling Language
CCM CORBA Component Model
CDP Component Deployment Plan
CDR Common Data Representation
CLP Constrained Linear Programming
CONST Constraints Optimization System
COTS Commercial Off The Shelf
CoWorkEr Component Workload Emulator
CSP Constraint Satisfaction Problem
CUTS CoWorkEr Utilization Test Suite
D&C Deployment and Configuration
DAnCE Deployment and Configuration Engine
DoD Department of Defense
DOM Document Object Model
DRE Distributed real-time embedded
DSML Domain-Specific Modeling Languages
EC2 Elastic Compute Cloud
EJB Enterprise Java Beans

EMF Eclipse Modeling Framework
FCF Filtered Cartesian Flattening
FCS Future Combat Systems
FFD First Fit Decreasing
GEMS Generic Eclipse Modeling System
GIG Global Information Grid

GME Generic Modeling Environment
GMF Graphical Modeling Framework
GUTS GEMS Utilization Test Suite
IDL Interface Definition Language
KP Knapsack Problem

Approved for Public Release; Distribution Unlimited
103

LE-DAnCE Locality-Enhanced Deployment and Configuration Engine
MCKP Multiple-Choice Knapsack Problem
MDA Model Driven Architecture
MDE Model-Driven Engineering
MDKP Multi-Dimensional Knapsack Problem
MMKP Multiple-choice Multi-dimensional Knapsack Problems
MVA Mean Value Analysis
NAOMI New Associative Object Model of Integration

NOMAD NetwOrk MinimizAtion Depolyment
OCL Object Constraint Language
OMG Object Management Group
ORB Object Request Broker
OS Operating System
PICML Platform Independent Component Modeling Language

PIM Platform-Independent Model
PLA Product-Line Architectures
PSM Platform-Specific Models
PSO Particle Swarm Optimization
QA Quality Assurance
QoS Quality of Service
RTA Response Time Analysis

SAX Simple API for XML
ScatterD Scatter Deployment Algorithm
SCORCH Smart Cloud Optimization for Resource Configuration Handling
SEM System Execution Modeling
SISPI Software-Intensive Systems Productivity Initiative
SLA Service Level Agreement
SOA Service-Oriented Architecture
SPRUCE Software PRoducibility Collaboration and Experimentation Environment
TAO The ACE ORB
UAV Unmanned Aerial Vehicle
UML Unified Modeling Language
URL Uniform Resource Locator

WML Workload Modeling Language
XSC XML Schema Compiler

Approved for Public Release; Distribution Unlimited
104

